
© 2024 Burak Soner

© 2024 Burak Soner

ELEC 305

Digital System Design Lab

31/12/2024 1

Fall 2024

Lecture 8:
Neural Networks - Short Introduction and FPGA Implementation

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner31/12/2024

▪ Neural Networks (NNs): Definitions and some history

▪ MLP vs. CNN: Different types of NNs

▪ NN Inference on FPGAs

- Types of operators in NNs inference

- Quantization (and fixed point numbers) in NN inference

- Parallelizability

2

Outline

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ A class of optimizable algorithms
that were recently shown to be very
powerful for many tasks

▪ They are not new! Fundamental
results since the 1960s

▪ Optimizable = you don’t explicitly
program it to do a task, you have
example data for that task + a “loss”
function that shows you how well
the task is being done, the neural
net learns by using these

31/12/2024 3

Neural Networks

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ The simplest NN is called a “multi layer
perceptron”: MLP

▪ Let’s define NN structure based on it

▪ We have an input vector of size S1, the
MLP will generate an output vector of
size S2

▪ To generate this output, the MLP will
apply a series of parametrized
transformations on the data
(e.g., matmul with “weights”, add with
“biases”, …)

31/12/2024 4

Neural Networks

img src: https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/

https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ These transformations are basically one unit
repeating itself over and over again

▪ The unit is typically called a “neuron”

▪ Neuron output = weighted sum of all input
elements + a bias term, passed through a
nonlinear “activation function”

▪ Many neurons come together to form a “layer”

▪ Each layer has different weights and bias values,
and sometimes also different activation fcns.

31/12/2024 5

Neural Networks

img src: https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f

▪ You actually know this form…
A single neuron with a sigmoid
activation is logistic regression!

▪ No activation = linear regression!

https://medium.com/@AI_with_Kain/understanding-of-multilayer-perceptron-mlp-8f179c4a135f

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ A single neuron can only do so much though

▪ The power of MLP (and arguably, NNs in general)
comes from cascading these neurons together

▪ Making layers “wider”, and networks of layers
“deeper” (buzzword alert: deep learning)

▪ When this is done, some layers stay “inside” →
these are called “hidden” layers

▪ As the number of hidden layers increase, you get
deeper networks

31/12/2024 6

Neural Networks

img src:
https://www.researchgate.net/publication/304701350_A_New_Multi-layer_Perceptrons_Trainer_Based_on_
Ant_Lion_Optimization_Algorithm/figures?lo=1&utm_source=google&utm_medium=organic

https://www.researchgate.net/publication/304701350_A_New_Multi-layer_Perceptrons_Trainer_Based_on_Ant_Lion_Optimization_Algorithm/figures?lo=1&utm_source=google&utm_medium=organic
https://www.researchgate.net/publication/304701350_A_New_Multi-layer_Perceptrons_Trainer_Based_on_Ant_Lion_Optimization_Algorithm/figures?lo=1&utm_source=google&utm_medium=organic

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ E.g., this MLP takes an input vector x of size 3

▪ Multiplies each x element with a different weight

- 3 weights and 1 bias for each neuron, 4 neurons in total:

▪ {w
11

, w
12

, w
13

}, {w
21

, w
22

, w
23

}, {w
31

, w
32

, w
33

}, {w
41

, w
42

,
w

43
}

▪ {b
o1

}, {b
o2

}, {b
o3

}, {b
o4

}

▪ Does a per-neuron addition of the 3 mult results

▪ Feeds each neuron sum through an activation fcn

▪ Multiplies each activation with a different weight:

- 4 weights and 1 bias in total: w
o1

, w
o2

, w
o3

, w
o4

 , b
o

31/12/2024 7

Neural Networks

▪ Sums the output of the w
o#

 mult and
declares that as the network output

- Output is a scalar, or 1-elem vector

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ So it’s actually possible to write this whole MLP down as one
simple equation:

Let φ be the nonlinear activation function

O = w
o1

* φ(x
1
*w

11
 + x

2
*w

12
 + x

3
*w

13
 + b

o1
) +

 w
o2

* φ(x
1
*w

21
 + x

2
*w

22
 + x

3
*w

23
 + b

o2
) +

 w
o3

* φ(x
1
*w

31
 + x

2
*w

32
 + x

3
*w

33
 + b

o3
) +

 w
o4

* φ(x
1
*w

41
 + x

2
*w

42
 + x

3
*w

43
 + b

o4
) + b

o

31/12/2024 8

Neural Networks

▪ Not the shortest equation ever, but it’s
surely simple, just adds and mults + one
nonlinear function (like the sigmoid)

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Networks are “trained” = parameters (weights, biases) are
updated based on a specific optimization algorithm

▪ Most opt. algo.s used today are flavors of “gradient descent”:

- Feed a certain # of x examples through the network, end
up with certain y output predictions from the network.

- Compare predictions with the ground truth for those y
values (“labels”) via your loss function (opt. objective)

- Compute the partial gradient from the loss to each
parameter → 𝛿(loss) / 𝛿(w

ij
)

31/12/2024 9

Neural Networks

training

inference

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ On a high dimensional manifold (dim = # of parameters), gradients
tell you which direction you need to update your weights (+
or - ?) to make the loss lower (i.e., your output more correct).

31/12/2024 10

Neural Networks

training

inference

img src: https://mriquestions.com/back-propagation.html

▪ This is training.

▪ We won’t do any training, this
was just FYI

▪ We’ll only do inference on
trained networks, inference
considers the MLP equation
we wrote out earlier

https://mriquestions.com/back-propagation.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ This single layer MLP has an interesting theoretical property:

▪ Given enough parameters and proper activation functions, the single-hidden-layer MLP can
approximate any bounded and continuous function to an arbitrary error level (Cybenko, 1989)

- How many parameters and which activation functions you need for a certain
approximation error level, for a given task, is very hard to determine though
(I’m not sure it’s even possible for an arbitrary error level)

▪ This is huge though!! → it basically means if you have enough data to represent your task
well, a “correctly-built” MLP, and a suitable optimization algorithm, your MLP will be capable
of solving any task you throw at it

31/12/2024 11

Neural Networks

https://web.njit.edu/~usman/courses/cs675_fall18/10.1.1.441.7873.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Limitations:

- Hard to find how much data is “enough” for any non-trivial task (see GPT-x studies)

- Hard to find “correctly-built” MLP, how many parameters do we need?

- Hard to find an optimization algorithm that allows for finding the correct parameters

▪ So it’s hard in all aspects 🙃, especially if you don’t have enough computational power

▪ It’s safe to say this is what caused the “AI Winters” of the past, and why the current AI boom
went much further than the earlier ones

31/12/2024 12

Neural Networks

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ In summary, the hypotheses were there

- “Actually if we were able to train this huge model on lots of data, this would probably work”

▪ But there wasn’t enough computational power or data for many of the challenging tasks

▪ One challenging task was image classification → the ILSVRC competition ranked methods
against each other.

▪ Up to 2012 people had engineered algorithms that were winning this competition (SIFT /
SURF features etc.)

31/12/2024 13

Neural Networks

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Come 2012 → Alexnet (Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton)

▪ CUDA (the language used for programming NVIDIA GPUs) was predominantly used for signal
processing and scientific computing before this paper

▪ The paper presented a CUDA implementation of CNNs that allowed orders of magnitude
faster training, allowing the models to be trained “further”

31/12/2024 14

Neural Networks

▪ Alexnet killed its competition by a large margin, kicking
off the AI revolution we know of today

▪ Well we saw MLPs, what’s a CNN though?

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ One problem MLPs have is that they work on fixed-size
inputs, i.e., x and y size are fixed

▪ This is a problem for image or audio processing tasks,
where you can have data points of virtually any size

▪ Also, the MLP is not translation-invariant:

- If MLP is trained with cats appearing on top left side
of the image (say, from x

1,1
 to x

102,57
), it will not

recognize cats appearing anywhere else

- This is not desirable for most tasks!

31/12/2024 15

Neural Network Types

img src:
https://aiplanet.com/learn/getting-started-with-deep-learning/convolutio
nal-neural-networks/267/cnn-transfer-learning-data-augmentation

https://aiplanet.com/learn/getting-started-with-deep-learning/convolutional-neural-networks/267/cnn-transfer-learning-data-augmentation
https://aiplanet.com/learn/getting-started-with-deep-learning/convolutional-neural-networks/267/cnn-transfer-learning-data-augmentation

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ We already know of a translation-invariant linear
transformation: convolution

▪ FIR filters (applied via convolution) slide over the input
data that needs to be filtered, and apply the same
operation over and over again to all parts.

▪ Using this instead of the matrix multiplication in MLP
(weight multiplication is actually matmul if you think
about it) gives us translation-invariant operation.

31/12/2024 16

Neural Network Types: CNN

▪ One disclaimer: the deep learning people don’t usually care too much about DSP, and since filter parameters are
learned here (rather than set w.r.t. some rules like the ones in FIIIR.com), you will see absolutely brazen (“biblically accurate”
if you will) versions of convolutions around (dilated grouped convs etc.), don’t let those confuse you, our only
relation to “convolving” here is this translation-invariance property, the rest is AI engineering.

http://fiiir.com
https://ikhlestov.github.io/pages/machine-learning/convolutions-types/#grouped-convolutions

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ So OK → Alexnet used CNN due to the translation-invariance property

▪ The next revolution was ResNets from Microsoft, using CNNs with some “residual
connections”, allowing for easier gradient propagation leading to depth > 100s of layers

- an output of layer 1 gets element-wise added to the output of layer 3, etc.

▪ The list goes on, with the latest members being Transformers (GPTs T) and Mamba (new hype)

▪ Major types of NNs: MLPs, CNNs, Recurrent NNs (RNNs) and their subclass LSTMs (basically
RNN with some complex memory modeling), and Transformers

▪ Anything else (GANs, RBFs, autoencoders etc.) you can think of them as variations on these

31/12/2024 17

Neural Network Types

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ A deeper investigation of NNs is outside our scope, so we’ll stick to the ones we can easily use

▪ MLPs and CNNs are extremely versatile, MLPs have proved their worth historically, and even
very small CNNs can realize useful tasks:

- <400 KB CNN, doing ES→EN translation: https://github.com/HyperbeeAI/nanotranslator
Almost as good as Google Translate on news articles!

- Keyword spotting (“up”, “down”, “yes”, …):
https://www.analog.com/en/resources/design-notes/keywords-spotting-using-the-max78000.html

- …

31/12/2024 18

Neural Network Types

https://github.com/HyperbeeAI/nanotranslator
https://www.analog.com/en/resources/design-notes/keywords-spotting-using-the-max78000.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Let’s break the CNN down then, just like we did with the MLP

▪ The neuron has a similar format, it does a linear
transformation with weights and biases first, but this time
there aren’t separate weights for every input element

▪ There is an FIR filter weight set, this slides over the input
elements (i.e., convolution), and a bias gets added on top

▪ Then, the output of the convolution is fed to a nonlinear
activation function, typically a ReLU function (y: =x if x>0 else =0)

31/12/2024 19

The CNN

- this used to be sigmoid or tanh in the older times to keep the network differentiable in the
backward pass, but it was shown later that residual functions like the ReLU led to easier
optimization landscapes, so people switched to those.

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ CNNs get wider on the “channel” axis: multiple
FIRs are applied in parallel on the same input

- CNNs are “fully-connected” like the MLPs
on this channel axis

▪ So, the equation of the CNN is simple too! It’s
just FIR filters instead of the matmul on MLP

▪ There are infinitely more complicated CNNs
you can find out there, with different types of
additional layers too, but for this course we
will not dive deeper into that direction, we’ll
just try to run a simple NN on an FPGA

31/12/2024 20

The CNN

img src:
https://www.researchgate.net/publication/344229502_A_Novel_Deep_Learning_Model_for_the_
Detection_and_Identification_of_Rolling_Element-Bearing_Faults/figures?lo=1

https://www.researchgate.net/publication/344229502_A_Novel_Deep_Learning_Model_for_the_Detection_and_Identification_of_Rolling_Element-Bearing_Faults/figures?lo=1
https://www.researchgate.net/publication/344229502_A_Novel_Deep_Learning_Model_for_the_Detection_and_Identification_of_Rolling_Element-Bearing_Faults/figures?lo=1

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Let’s go back to the MLP and start thinking about the FPGA implementation over an example

▪ Example: Predicting California housing prices

- 1x8 input vector: median income, house age, avg. # of rooms, avg. # of bedrooms, total
population, avg. # of household members, house latitude, house longitude

- 1x1 output: median house price prediction

▪ Some are integers, some are floats, mixed

31/12/2024 21

NN Inference on FPGA

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Assume that we’ll use the following MLP →

▪ This basically has 2 hidden layers, 1 input and 1
output layer, and all layers other than the final
output layer has ReLU activation functions.

▪ # of parameters on each layer:

- Input layer → 8*16 weights, 16 biases

- Hidden layer 1 → 16*32 weights, 32 biases

- Hidden layer 2 → 32*20 weights, 20 biases

- Output layer → 20*1 weights, 1 bias

31/12/2024 22

NN Inference on FPGA

▪ That’s 1300 weights, and 69 biases, 1369
parameters in total

▪ Not huge, but compared to the 2-3
parameters we had on earlier labs, it’s big

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner31/12/2024

▪ The equation for this MLP will not be as simple as the first one we saw with 1 hidden layer
since this time the output of hidden layer 1 is fed to a hidden layer 2 instead of the output

▪ The types of operators inside do not change though. We will still have to do add and mult

▪ There’s one new operator → ReLU

- How can this be implemented
on the FPGA efficiently, any guesses?

23

NN Inference on FPGA

Img src:
https://www.researchgate.net/publication/333411007_Multi-Classification_of_Brain_
Tumor_Images_Using_Deep_Neural_Network/figures?lo=1&utm_source=google&u
tm_medium=organic

https://www.researchgate.net/publication/333411007_Multi-Classification_of_Brain_Tumor_Images_Using_Deep_Neural_Network/figures?lo=1&utm_source=google&utm_medium=organic
https://www.researchgate.net/publication/333411007_Multi-Classification_of_Brain_Tumor_Images_Using_Deep_Neural_Network/figures?lo=1&utm_source=google&utm_medium=organic
https://www.researchgate.net/publication/333411007_Multi-Classification_of_Brain_Tumor_Images_Using_Deep_Neural_Network/figures?lo=1&utm_source=google&utm_medium=organic

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner31/12/2024

▪ The equation for this MLP will not be as simple as the first one we saw with 1 hidden layer
since this time the output of hidden layer 1 is fed to a hidden layer 2 instead of the output

▪ The types of operators inside do not change though. We will still have to do add and mult

▪ There’s one new operator → ReLU

- Put an if on the sign bit, if it’s 1, assign 0!

▪ For more complicated activation functions like the sigmoid, you usually need LUT-based
implementations

- example: https://github.com/dicearr/neuron-vhdl/blob/master/src/sigmoid.vhd

24

NN Inference on FPGA

https://github.com/dicearr/neuron-vhdl/blob/master/src/sigmoid.vhd

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner31/12/2024

▪ OK, the operators are covered, now for the values that go into those operators…

▪ Just like in the FIR example, we’ll have to choose formats for every number and quantize

▪ Let’s start with the inputs

25

NN Inference on FPGA

▪ There’s some engineering to be
done, we need to check the
min-max values and how the values
are distributed to see what Q
format should be assigned to each
value

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner31/12/2024

▪ Next, we’ll do the same for parameters, just like we did for FIR filter coefficients

▪ Afterwards, we’ll analyze the computation for the Q formats we chose and see how that
affects our prediction accuracy

- The quantization error didn’t hurt us too much in the FIR case, but it will hurt us now

- The consequent layers will amplify the quantization error, possibly creating even gibberish
predictions compared to our starting point

▪ We’ll iterate, and try to see if we can get better accuracy with more bits (i.e., less quantization
error). Once we’re OK with the accuracy we see with simulated FPGA implementation, we’ll
then transfer this network to VHDL, implement it, and do the simulation in VHDL, just like we
did in the FIR case.

26

NN Inference on FPGA

© 2024 Burak Soner

© 2024 Burak Soner

next → california housing example

󰢡

31/12/2024 27

