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Lecture 6:
DSP Algorithms on FPGAs
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▪ The project topic is not set, students prepare their own proposals and negotiate with the instructor

▪ There are many great project examples on the MIT 6.111 course website that you can check out:

https://web.mit.edu/6.111/volume2/www/f2019/  (see “Past projects - all”)

▪ These are typically challenging signal (audio or image) processing and/or game-based projects 

▪ Since this is the 2nd semester of our course, we don’t have as many interface modules and 
infrastructure capabilities, but we can purchase modules if you have exciting proposals for them!

- I can help you with building custom modules / boards too, but these things take time, and you’ll 
have to factor that into your time plan in your project proposal

▪ We already have a few audio IO modules and accelerometers as well as FPGA boards that you can 
use for the projects, I’ll provide mode details on them later
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Term projects

https://web.mit.edu/6.111/volume2/www/f2019/
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▪ I will accept individual submissions, I believe we can arrange board access. We’ll scale CPs accordingly.

▪ You’ll get 1 chance at a proposal revision (until 12.12.2024) and you have to have a proposal accepted 

by the second deadline (22.12.2024) or you unfortunately lose 35% of the course grade. Earlier is OK.

▪ Challenging projects will receive higher credit. To facilitate this, each project will be issued a “challenge 
point” (CP) between 1 and 4. The CP of your project will modulate your 35% project grade as follows:

- CP = 1 → your project can get max. 28.5% out of the 35%

- CP = 2 → your project can get max. 30.5% out of the 35%

- CP = 3 → your project can get max. 32.5% out of the 35%

- CP = 4 → your project can get max. 35.0% out of the 35%

▪ I will provide suggestions during the proposal phase to push all projects up to CP=4, but it’s your choice

Term projects
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▪ I’m open to questions about project ideas 

(send me an e-mail, we can arrange a meeting too).

▪ I know it’s not easy to choose one, so please ask, we’ll find a project 
that motivates you

Term projects
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▪ Short review for Part 1

▪ Motivation for DSP on FPGAs

▪ Breaking down the FIR filter algorithm

▪ Optimizing the FIR filter
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▪ Part 1 consisted of …

- describing a circuit using (“DUT”) VHDL based on a given 
set of specifications

- using Vivado to automatically synthesize the DUT and 
implement it on the FPGA

- simulate DUT behavior in VHDL, characterize its accuracy

- constrain and analyze its timing characteristics

- consequently optimize it if it fails

05/12/2024 6

Short Review for Part 1

1. library IEEE;
2. use IEEE.STD_LOGIC_1164.ALL;
3.  
4. entity  coffeemaker is
5.   Port ( clk : in  STD_LOGIC;
6.          led : out STD_LOGIC;
7.          sw  : in STD_LOGIC
8.        );
9. end coffeemaker;
10.  
11. architecture Behavioral of coffeemaker is
12.   signal pulse : std_logic := '0';
13.   signal count : integer range 0 to 199999999 := 0;
14. begin
15.   process(clk, sw)
16.   begin
17.        ...
18.   end process;
19.  
20.   led <= pulse;

21. end Behavioral;
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▪ Recently, we talked about fixed point number representations, 
and doing arithmetic operations with them

05/12/2024 7

Short Review for Part 1
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▪ Recently, we talked about fixed point number representations, 
and doing arithmetic operations with them

▪ We also mentioned two important classes of optimizations:
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▪ Recently, we talked about fixed point number representations, 
and doing arithmetic operations with them

▪ We also mentioned two important classes of optimizations:

1. RTL-level, pipelining and parallelism
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▪ Recently, we talked about fixed point number representations, 
and doing arithmetic operations with them

▪ We also mentioned two important classes of optimizations:

1. RTL-level, pipelining and parallelism

2. Using device primitives (e.g., DSP48E1 for our Artix-7)
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Short Review for Part 1
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▪ Signal processing circuits are heavily used in telecom / networking

- Filters, equalizers, OFDMs, PLLs, interpolators, DDS, …

▪ The prototyping cycle usually goes like this:

1. Very early PoC → CPUs / MCUs (“just testing”) 

2. Hardware-in-the-loop / custom application → FPGAs 

3. Proven design, let’s make it scalable → ASIC

▪ We’re investigating 2. There are books dedicated to it →→

▪ The lifecycle stops at 2 if there isn’t a market for the ASIC

05/12/2024 11

Motivation: DSP on FPGAs
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▪ FPGA clock speeds are not faster 
than CPU/GPUs or ASICs!

▪ but the two optimizations we 
mentioned make FPGAs very 
attractive for DSP: 

1. arbitrary parallelization / 
pipelining schemes 

2. coupling that with efficient 
primitives such as DSP IP cores

05/12/2024 12

Motivation: DSP on FPGAs

slide src: https://www.ieee.li/pdf/viewgraphs/mapping_dsp_algorithms_into_fpgas.pdf 

https://www.ieee.li/pdf/viewgraphs/mapping_dsp_algorithms_into_fpgas.pdf
https://www.ieee.li/pdf/viewgraphs/mapping_dsp_algorithms_into_fpgas.pdf
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▪ FPGA vs. processors → optimization 
capabilities, but ASIC vs. FPGA is different

▪ FPGAs are typically preferred over ASICs 
when “reconfigurability after deployment” is 
a requirement, or when ASIC cost is too high

▪ For instance, CERN researchers use FPGAs in 
their particle accelerators to filter many 
signals in parallel →→→→

▪ In this case it’s 84 filters, but it’s a 
work-in-progress so requirements probably 
change down the line

05/12/2024 13

Motivation: DSP on FPGAs

slide src: https://accelconf.web.cern.ch/BIW2012/talks/weap02_talk.pdf 

https://accelconf.web.cern.ch/BIW2012/talks/weap02_talk.pdf
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▪ One of the most exciting FPGA-DSP applications is a software-defined radio (SDR)

05/12/2024 14

Motivation: DSP on FPGAs

▪ SDR: just use super-fast 
ADC / DACs and 
implement the rest of 
the radio chain on FPGA

▪ Radio chains were 
“hardware-defined” →

▪ Main reason: HUGE 
bandwidth 
(throughput!) 
requirements

img src: https://www.analog.com/en/resources/analog-dialogue/articles/rf-signal-chain-discourse-part-2-essential-building-blocks.html 

https://www.analog.com/en/resources/analog-dialogue/articles/rf-signal-chain-discourse-part-2-essential-building-blocks.html
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▪ Being able to use an SDR & designing DSP algorithms for its on-board FPGA is an important 
skill for almost all defense and telecommunications jobs out there!

05/12/2024 15

Motivation: DSP on FPGAs

img src: https://www.testdynamics.co.za/Product/Ettus.html 

https://www.testdynamics.co.za/Product/Ettus.html
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▪ Let’s start simple → one important 
building block used in most DSP 
applications is the FIR filter

05/12/2024 16

FIR filter

Img src: https://wirelesspi.com/finite-impulse-response-fir-filters/ 

https://wirelesspi.com/finite-impulse-response-fir-filters/
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▪ Let’s start simple → one important 
building block used in most DSP 
applications is the FIR filter

▪ FIR: Finite Impulse Response

05/12/2024 17

FIR filter

Img src: https://wirelesspi.com/finite-impulse-response-fir-filters/ 
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▪ Let’s start simple → one important 
building block used in most DSP 
applications is the FIR filter

▪ FIR: Finite Impulse Response

- meaning the impulse response of 
the filter is “zero after some point”

▪ This makes the filter stable

- You might remember IIRs as being (potentially) 
unstable, that’s because they have feedback, 
their impulse may never decay to 0 (depending 
on how the fed-back output turns out)

05/12/2024 18

FIR filter

Img src: https://wirelesspi.com/finite-impulse-response-fir-filters/ 

https://wirelesspi.com/finite-impulse-response-fir-filters/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ We mentioned SDRs, so let’s cover a 
telecommunication application where 
the FIR filter takes a role

▪ The Amplitude Modulation (AM) 
demodulator is one such appl. where 
the envelope of a signal is recovered 
from an RF signal in noise

▪ What is the mathematical form of the 
AM RF signal?

05/12/2024 19

FIR filter
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▪ We mentioned SDRs, so let’s cover a 
telecommunication application where 
the FIR filter takes a role

▪ The Amplitude Modulation (AM) 
demodulator is one such appl. where 
the envelope of a signal is recovered 
from an RF signal in noise

▪ The RF signal is basically a carrier (⍵) 
multiplied with the “message” signal 
(A(t) below) contaminated with noise:

05/12/2024 20

FIR filter

+ noise

▪ How do we demodulate this at 
the receiver side?
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▪ We mentioned SDRs, so let’s cover a 
telecommunication application where 
the FIR filter takes a role

▪ The Amplitude Modulation (AM) 
demodulator is one such appl. where 
the envelope of a signal is recovered 
from an RF signal in noise

▪ The RF signal is basically a carrier (⍵) 
multiplied with the “message” signal 
(A(t) below) contaminated with noise:
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FIR filter

▪ On the receiver side we first run the RF through a 
“mixer” (multiplication with a local oscillator at carrier freq.), 
and then lowpass-filter the output to recover A(t) 

Img src:https://www.dsprelated.com/showarticle/938.php 

+ noise

https://www.dsprelated.com/showarticle/938.php
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▪ The LPF in this AM demod can be implemented with an FIR filter

- It doesn’t have to be an FIR by the way, don’t get confused, you could use an IIR, 
but designing a stable IIR filter for a simple task like this is typically more 
complicated than necessary, and outside the scope of this course

▪ Let’s assume a 1 MHz carrier and A(t) bandwidth of 10 kHz

- Tidbit: AM is 535 to 1605 kHz, 1/2 λ antennas are basically towers →→→→→

05/12/2024 22

FIR filter

img src: https://europepmc.org/article/MED/28900596 img src: https://en.wikipedia.org/wiki/Mast_radiator 

▪ Assuming a perfect mixer, we’d 
be operating at baseband, and 
want the FIR LPF to have a 
cut-off at 15 kHz to be safe

https://europepmc.org/article/MED/28900596
https://en.wikipedia.org/wiki/Mast_radiator
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▪ We want a digital implementation, we’ll use an ADC, how fast should we sample the signal?

05/12/2024 23

FIR filter
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▪ We want a digital implementation, so we need to digitize the incoming baseband signals first

- In an SDR, the mixing part could be achieved with what’s called a “digital downconversion” (DDC), so we would be 
working on the FIR filter with digitized inputs directly. This is an advanced method though, see this ADI article on IQ 

sampling and DDC for more info. Let’s assume we’re digitizing the incoming baseband for this FIR filter analysis.  

▪ Let’s pass it through an ADC, sampling the incoming signal at 100 kHz 

- Note that this is much higher than the necessary 20 kHz @Nyquist, no good reason, just for easier visualization

05/12/2024 24

FIR filter

img src: https://cycling74.com/tutorials/demystifying-digital-filters-part-1 

▪ To apply the filter, we’ll convolve the resulting digitized input 
signal with the filter “kernel”

▪ The kernel is what computer scientists call a stripped version 
of the impulse response of the filter (cut the zeros out)

https://www.analog.com/en/resources/analog-dialogue/articles/whats-up-with-digital-downconverters-part-1.html
https://cycling74.com/tutorials/demystifying-digital-filters-part-1
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▪ We usually need to go through FIR filter design steps to 
get the kernel, but that’s not really a part of this course

▪ Therefore let’s use an online calculator: https://fiiir.com/ 

▪ Given a few desired parameters, FIR filter design is a 
pretty straightforward optimization problem 

▪ This is an automated designer that solves that problem to 
some degree of tolerance, taking as input…
- sampling frequency

- windowing method to be used

- desired cutoff frequency

- desired transition bandwidth

05/12/2024 25

FIR filter

https://fiiir.com/
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▪ The simplest FIR filter we can think of for this application is 
one with a rectangular window and no constraint on the 
transition bandwidth →→→

▪ This results in a 3-coefficient approximation of the sinc:

05/12/2024 26

FIR filter
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▪ The tightest transition band (1kHz) creates the best approx. to the ideal FIR LPF with a rect 
window (rect pulse in the freq domain), but this one has 91 coefs (higher complexity):

05/12/2024 27

FIR filter
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▪ If we need smoother functions at the output we could opt for Blackman windows too           
(with even higher complexity though): 

▪ Nevertheless, these are more advanced DSP topics, not our concern for now

05/12/2024 28

FIR filter
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▪ Let’s settle for a simpler 5-coef filter with a relaxed transition bandwidth constraint

05/12/2024 29

FIR filter
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▪ Let’s simulate this, a random baseband signal of 10 kHz bandwidth, contaminated by noise:

05/12/2024 30

FIR filter
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▪ When we apply the 5-coef filter we just designed, the high-band noise power decreases

▪ OK we have the software verification, the LPF works

▪ how can we deploy this on an FPGA, what do we need to consider? How did we transition 
from an algorithm on paper to a digital design earlier (hint: linear regression)?

05/12/2024 31

FIR filter
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▪ Considerations:

- Lay out the computational graph like we did earlier for the linear regressor

- The FIR is already in discrete time, so sampling is already done

- Quantize the values in the computational graph (i.e., convert floats to fixed point)

▪ Let’s start by drawing the computational graph to motivate STA and optimizations 

▪ we’ll translate the numbers to fixed point representations and have a look at accuracy against 
the software implementation in the pre-lab session

05/12/2024 32

FIR filter
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▪ The FIR filter is applied by a convolution operation

▪ where x[n-N] are input samples, and b0, b1, … bN are kernel elements (i.e., impulse response samples)

- note however that the kernel is inverted in time, so b0 is the last element of the impulse response

▪ digital designers typically call the result of the multiplication with a kernel element and its 
corresponding input sample, e.g., b0*x[n], a “filter tap”

▪ the # of taps is an indication how complex the implementation is (our example is a 5-tap filter)

05/12/2024 33

FIR filter

https://dspguru.com/dsp/faqs/fir/basics/
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▪ The computational graph therefore looks like this →→→→→→

▪ However we already know x_n-1 = (x_n delayed by 1 clock cycle),          
so this is an equivalent graph:

05/12/2024 34

FIR filter

▪ The red line is called a 
“delay line” 

▪ It’s typically 
implemented with a 
series of flip-flops 
delaying the signal by 1 
clock cycle each

▪ This graph repeats for every 
input sample to compute the 
corresponding output sample
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▪ Now let’s forget about Vivado for a sec and think of how we would implement this ourselves

05/12/2024 35

FIR filter
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▪ Now let’s forget about Vivado for a sec and think of how we would implement this ourselves

▪ Delays are basically FFs. We need 5 multipliers and 5 adders.

05/12/2024 36

FIR filter: Optimizations

▪ Now try to picture the timing: Assign virtual flip-flops 
at circuit inputs and outputs like STA does, and then 
compute the time that it takes for the combinational 
circuit in between to run.

▪ Mults, adders and flip-flops, …, that’s pretty long, this 
circuit may run into timing problems with fast clocks

▪ Can you think of some basic optimizations to reduce 
the path lengths?
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▪ The one we have is called “direct form”. One well-known optimization is a “transposed” form

05/12/2024 37

FIR filter: Optimizations

▪ This changes the order in 
which the ops are applied, 
so it’s the same math, but 
less combinational delay 
for the paths

▪ Any ideas for increasing 
clock speeds further?

img src: https://vhdlwhiz.com/part-2-finite-impulse-response-fir-filters/ 

https://vhdlwhiz.com/part-2-finite-impulse-response-fir-filters/
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▪ Pipelining this is also possible, creating even less risk of setup-hold time violations, allowing 
for faster clocks in expense of more clock cycles of latency
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FIR filter: Optimizations

img src. https://www.youtube.com/watch?v=_1LlX-V5yCA&t=158s 

https://www.youtube.com/watch?v=_1LlX-V5yCA&t=158s
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▪ More complex optimizations are possible, especially depending on the values of the coefs

▪ For instance for symmetric coefs, the computations can be “folded” to reduce the number 
of multiplications by a factor of 2:

05/12/2024 39

FIR filter: Optimizations

▪ Or half-band filters allow for 
skipping computations for 
zero-valued coefficients etc.

▪ The list of optimizations for 
specific FIR filter configurations 
can keep going, this is a 
“fruitful” engineering problem
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next → lab 3

I’ll provide you Python-based software tools to help your testbench
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