
© 2024 Burak Soner

© 2024 Burak Soner

ELEC 305

Digital System Design Lab

05/12/2024 1

Fall 2024

Lecture 5:
Number Formats and Arithmetics



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Up to now we’ve seen how to…

- describe a circuit using (“DUT”) VHDL based on a given 
set of specifications, use Vivado to automatically 
synthesize the DUT and implement it on the FPGA

- simulate DUT behavior in VHDL, characterize its accuracy, 
constrain and analyze its timing characteristics, and 
consequently optimize it if it fails

▪ This pretty much sums up the tasks of a digital designer, but 
there’s a catch, a recurring theme → Vivado keeps getting 
better at doing most of these automatically. We therefore 
need to climb higher up on the abstraction ladder.

▪ The designer should also be proficient in building / testing / 
optimizing on the algorithms level to advise Vivado properly.

▪ That’s what we’ll be covering in Part 2.

05/12/2024 2

Recap of Part 1

1. library IEEE;
2. use IEEE.STD_LOGIC_1164.ALL;
3.  
4. entity  coffeemaker is
5.   Port ( clk : in  STD_LOGIC;
6.          led : out STD_LOGIC;
7.          sw  : in STD_LOGIC
8.        );
9. end coffeemaker;
10.  
11. architecture Behavioral of coffeemaker is
12.   signal pulse : std_logic := '0';
13.   signal count : integer range 0 to 199999999 := 0;
14. begin
15.   process(clk, sw)
16.   begin
17.        ...
18.   end process;
19.  
20.   led <= pulse;

21. end Behavioral;



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ The family of circuits we’ve dealt with so far are typically called “boolean circuits”: Inputs and 
outputs were binary, and even when we used vectors we considered each bit separately

▪ The only arithmetic component we saw was the simple counter, which incremented                
(or decremented, or reset) its unsigned integer “count value” one by one

▪ While such circuits are indeed a large application area for reconfigurable logic ICs, FPGAs are 
nowadays hailed for their abilities of parallel processing of custom arithmetics, mostly due to 
the AI hype and its endless hunger for more powerful compute

▪ In this part of the course, we’ll start by defining arithmetics for FPGAs and discuss migrating 
the computational graphs we define on paper to the digital domain

▪ Then, we will dive into building useful applications with those

05/12/2024 3

Intro to Part 2



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Quantization

▪ Fixed point (FxP) vs. floating point 

▪ FxP number formats and arithmetic operations

4

Outline



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Quantization

▪ Fixed point (FxP) vs. floating point 

▪ FxP number formats and arithmetic operations

5

Outline



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Remember this analog to digital conversion slide from 
lecture 2? →→→

▪ digitization = sampling + quantization

▪ We mentioned that we would cover quantization in detail (for 

sampling, check, e.g., ELEC 303). We’re at that point now.

▪ Basic definition of quantization: To get deterministic and 
repeatable outputs despite noise, we map sets of “real” 
values to discrete intervals. Larger intervals mean we need 
less resources but it also means more error w.r.t. to the 
“real” value, so we try to engineer these discrete intervals to 
minimize both resource usage and quantization error

05/12/2024 6

Quantization

img src: https://web.mit.edu/6.111/volume2/www/f2019/handouts/L01.pdf 

https://web.mit.edu/6.111/volume2/www/f2019/handouts/L01.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ To migrate algorithms to the digital domain, we apply quantization 
to every number on the computational graph of that algorithm.

▪ Depending on the quantization scheme we choose, we will get 
different amounts of error on each number (compared to the “real value”), 
which will affect the accuracy of the algorithm

▪ The algorithms designer in a digital design team needs to take this 
into account while developing the computational graph (typically 
via tweaking some parameters)

▪ The error is non-deterministic (you never know what the real value is), so you 
design “around it” (e.g., if the max quantization error is too high for 
your specs, you increase the bitwidth etc.)

7

Quantization

img src: https://github.com/dicearr/neuron-vhdl/tree/master 

https://github.com/dicearr/neuron-vhdl/tree/master


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Let’s analyze the computational graph of an example algorithm: linear regression

8

Quantization

▪ For n = p =1 (single unit, single parameter), the equation becomes:

y
1
 = β

0 
+ x

1
*β

1

the computational graph for this algorithm looks like this:

▪ Basically there are 6 numbers 
here : x

1 
, y

1 
, t

1 
, t

2 
, β

0 
, β

1

▪ They have “real values” (in ℝ6) 
which we need to quantize



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Recall how we tackled this in lecture 2 with a single number, what we did was just one way of 
doing this. We’ll now see alternative methods and their pros/cons and do this on a 
computational graph level (to all 6 numbers, considering their application requirements).

9

Quantization



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Quantization

▪ Fixed point (FxP) vs. floating point 

▪ FxP number formats and arithmetic operations

10

Outline



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Quantization

▪ Fixed point (FxP) vs. floating point 

▪ FxP number formats and arithmetic operations

11

Outline



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ We make the following choices when quantizing our 
numbers: 

- uniform vs. non-uniform: regarding the 
distribution of the sizes of discretization intervals

- scalar vs. vector: regarding whether numbers are 
quantized with a scheme individually, or are they 
grouped into vectors and quantized relatively. 
We will mostly cover scalar methods.

- how is the “rounding” done: when we quantize 
the analog reading, which way do we snap the 
value? (ceil, floor, towards zero, nearest etc.)

12

Fixed Point vs. Floating Point

img src: 
https://medium.com/@florian_algo/model-quantization-2-uniform-and-non-uniform-q
uantization-47ca5b5d3ec0 

https://medium.com/@florian_algo/model-quantization-2-uniform-and-non-uniform-quantization-47ca5b5d3ec0
https://medium.com/@florian_algo/model-quantization-2-uniform-and-non-uniform-quantization-47ca5b5d3ec0


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ The uniform vs. non-uniform choice is typically made looking at the dynamic range (max-min) 
and precision (step size) requirements of the quantities that you’re interested in.

▪ If you need a relatively small range of numbers with the same precision requirements all 
throughout the range, you should go with uniform quantization, specifically with fixed point.

▪ If you need to cover a very large range, and you need high precision in the lower ranges but 
are OK with lower precision in the higher ranges, you can go with non-uniform quantization, 
specifically with floating point

13

Fixed Point vs. Floating Point

img src: https://m.blog.naver.com/ptm0228/222086661956 

▪ However don’t let this difference trick you, you’re 
still getting approximations of real numbers in 
both cases (in fractional form). Only difference is 
in how well that approximation is and “where” it 
is (on the number line)

https://m.blog.naver.com/ptm0228/222086661956


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Fixed point (FxP) number representations (uniform and scalar) are called 
so because they “affix the decimal point” (i.e., the fractional part of the 
number). They are defined by three parameters: 1) a scale factor, 2) a 
zero point mapping (bias), and 3) a rounding method 

14

Fixed Point vs. Floating Point

▪ You might have run into these in an image processing task with the name “normalization”, where you 
map a range of “real” numbers (actually they were floats), say x, in the range {0,1} to uint8 (8-bit, 256 
different values) numbers in {0,255} to run imshow() on the result. 

▪ Here, scale factor is 255, the zero point is 0.5 → 127.5,  and arbitrary rounding can be chosen. 

▪ The mapping is thus from {0, 0.00390625, 0.0078125, … , 0,99609375} to {0, 1, 2, …, 255}. Mark how 
this mapping does not have exact representations of the real values 1 (out of range) or 0.5 (since 127.5 

cannot exist in the uint8 space, the closest are 127 and 128). 

img src: http://www.cburch.com/books/float/ 

http://www.cburch.com/books/float/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ To better picture this, we can think of FxP having an “internal representation” which the 
designer knows of, and a “represented value” which the circuit will operate on. 

▪ The {0, 0.00390625, 0.0078125, … , 0,99609375} range is the internal representation, and the 
{0, 1, 2, …, 255} range is the values represented by them.

▪ One thing to note here before moving on is that every interval within those ranges have the 
same value (i.e., the number of “ticks” are the same for any given two intervals of the same 
size within the range). This is why FxP is uniform quantization.

▪ Furthermore, every value is quantized individually. This is why FxP is scalar quantization.

▪ If vector quantization was used, the scale factor and zero points would be determined based 
on groups within ranges (e.g., {0, 0.2} would have one factor, {0.2, 1.0} would have another)

15

Fixed Point vs. Floating Point



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Floating point is non-uniform (but still scalar 

quantization). The number of ticks in two 
intervals of the same size are different when 
they are at different points

▪ The closer you are to 0, the more resolution 
you get, and the farther away, the less. 

▪ However, thanks to this we can represent 
very large numbers that would require many 
many many more bits to represent with FxP! 

▪ A good read: “What Every Computer Scientist 
Should Know About Floating-Point Arithmetic”

16

Fixed Point vs. Floating Point

img src: https://blogs.mathworks.com/cleve/2014/07/07/floating-point-numbers/ 

img src: 
https://towardsdatascience.co
m/binary-representation-of-th
e-floating-point-numbers-77d
7364723f1 

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://blogs.mathworks.com/cleve/2014/07/07/floating-point-numbers/
https://towardsdatascience.com/binary-representation-of-the-floating-point-numbers-77d7364723f1
https://towardsdatascience.com/binary-representation-of-the-floating-point-numbers-77d7364723f1
https://towardsdatascience.com/binary-representation-of-the-floating-point-numbers-77d7364723f1
https://towardsdatascience.com/binary-representation-of-the-floating-point-numbers-77d7364723f1


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Which one should we use? 

▪ Like we said earlier: This depends on the application 
requirements, but the trade-off looks like this →→

▪ There is one additional consideration for us since 
we’re designing hardware: If we are going to use 
floating point numbers, we need to have the 
circuitry that can do arithmetic with them! 

▪ The arithmetic operators we saw up to now (full 
adders etc.) worked on integers, they didn’t 
consider decimal points and fractions. 

▪ These components can be used with FxP, but 
floating point numbers need special circuitry

17

Fixed Point vs. Floating Point

▪ We will focus on FxP representations for 
the rest of this course

img 
src:https://www.youtube.c
om/watch?v=YXKDjVcC
WyE 

https://www.youtube.com/watch?v=YXKDjVcCWyE
https://www.youtube.com/watch?v=YXKDjVcCWyE
https://www.youtube.com/watch?v=YXKDjVcCWyE


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Quantization

▪ Fixed point (FxP) vs. floating point 

▪ FxP number formats and arithmetic operations

18

Outline



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Quantization

▪ Fixed point (FxP) vs. floating point 

▪ FxP number formats and arithmetic operations

19

Outline



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner05/12/2024

▪ Let’s discuss this over Dr. Zhu’s slides: 

20

Fixed Point Number Formats and Arithmetic

http://www.youtube.com/watch?v=YXKDjVcCWyE


© 2024 Burak Soner

© 2024 Burak Soner

next → DSP + optimization



05/12/2024 21


