
© 2024 Burak Soner

© 2024 Burak Soner

ELEC 305

Digital System Design Lab

28/11/2024 1

Fall 2024

Lecture 4:
Performance Analysis and Optimization

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Up to now we’ve seen how to…

- describe a circuit using (“DUT”) VHDL based on a given
set of specifications

- use Vivado to automatically synthesize the DUT and
implement it on the FPGA

- use VHDL to generate test signals for DUT and simulate
its behavior to characterize its accuracy

▪ However, we don’t know how to characterize circuit
timing performance, and fix it if it’s not satisfactory.

▪ Today we’ll see analyses and related optimizations to
improve timing performance.

28/11/2024 2

Recap

1. library IEEE;
2. use IEEE.STD_LOGIC_1164.ALL;
3.
4. entity coffeemaker is
5. Port (clk : in STD_LOGIC;
6. led : out STD_LOGIC;
7. sw : in STD_LOGIC
8.);
9. end coffeemaker;
10.
11. architecture Behavioral of coffeemaker is
12. signal pulse : std_logic := '0';
13. signal count : integer range 0 to 199999999 := 0;
14. begin
15. process(clk, sw)
16. begin
17. ...
18. end process;
19.
20. led <= pulse;

21. end Behavioral;

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ With analyses and optimizations, we will have covered the whole digital design workflow

▪ This will conclude Part 1 of the course, and we’ll use these skills in Part 2 while building
useful algorithms on FPGAs

3

Recap

img src: “FPGAs with VHDL: first steps”, Helen DeBlumont

e.g., our debouncer

.xcd

this is the new part

28/11/2024

https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

4

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

5

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ The performance of a digital design is typically characterized in a few dimensions:

- Accuracy: this is application-level work, the digital designer typically can’t do much here,
it’s the job of the “algorithms engineer” to ensure that accuracy is within specs and the
digital engineer simply translates that algorithm to a hardware implementation

▪ (Part 1 of the course (now) covers the work of the digital designer, part 2 will cover the algorithms part)

- Timing: throughput (how many outputs per second) and latency (worst delay from input to output)

- Power, area, mechanical, thermal, safety, reliability, tampering, “rad-hard”ness, …

▪ Timing and accuracy are common attributes in all digital design projects. The rest are a bit
advanced for this course, and may or may not be important depending on project specs.

▪ We’ll focus on timing analyses and optimizations in this course.

6

Performance Attributes in Digital Circuits

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ While throughput and latency might
be tightly connected in some designs,
they are actually separate design
goals. The traffic example on the
right is a great analogy →→→

▪ FPGAs (and digital circuits in general)
are typically used for achieving
extremely low latency levels
compared to CPUs / GPUs

▪ Throughput is more a factor of input
and output configurations

7

Performance Attributes in Digital Circuits

img src: https://medium.com/@nbosco/latency-vs-throughput-d7a4459b5cdb

28/11/2024

https://medium.com/@nbosco/latency-vs-throughput-d7a4459b5cdb
https://medium.com/@nbosco/latency-vs-throughput-d7a4459b5cdb

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

8

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

9

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ How do we compute throughput and latency?

▪ Let’s consider a simple combinational circuit →→

▪ Due to gate propagation delays, the correct response of
the circuit output w.r.t. a change at the input appears after
a non-zero time interval. Before that → all bets are off!
The output can be “anything” (for the digital designer)

▪ We know what’s happening here from our analog courses
though: The signals are “slowly” rising or falling + there’s
noise, so the digital designer can’t know whether a given
signal is a 0 or a 1 before the signal “settles”. That’s why
things are not predictable for the digital world.

10

Quantifying Timing Performance

img src: wikibooks,
Digital Circuits

28/11/2024

https://en.wikibooks.org/wiki/Digital_Circuits/Adders#/media/File:Full-Adder_Propagation_Delay.svg
https://www.homemade-circuits.com/calculating-transistor-as-a-switch/
https://en.wikibooks.org/wiki/Digital_Circuits/Adders#/media/File:Full-Adder_Propagation_Delay.svg
https://en.wikibooks.org/wiki/Digital_Circuits/Adders#/media/File:Full-Adder_Propagation_Delay.svg

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Let’s name this propagation delay based “finite waiting time” for the combinational circuit: t
p
 ,

this is equal to the “latency” in this simple circuit

▪ Therefore, for a purely combinational circuit, interpreting timing performance is simple: the
input shouldn’t be changed faster than 1/t

p
 and throughput = 1/latency here

▪ Things start getting more complicated when sequential components are added:

- Signals inside the circuit now get registered at clock events rather than being available to
read at arbitrary times (e.g., we connect the combinational circuit to a flip-flop and consider the
output of the flip-flop as the useful signal instead)

- We now have to analyze the timing performance of the register (clocked flip-flop), and
throughput and latency get computed in terms of clock freq and periods, respectively

11

Quantifying Timing Performance

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Let’s consider this simple combinational + sequential circuit
with FFs at its IOs and a few gates in between →→→

▪ A simulation run for this circuit with realistic timing
information demonstrates 3 important effects:

1. FF propagation delay: S1_reg/Q and S2_reg/Q changing
after a short time following the rising-edge of CLK

2. Combinational propagation and net (wire) delays:
A2/a takes a longer time to change compared to A2/b

3. Solving glitches with FFs: A2/c should never have been
high (from behavioral PoV), but the delays caused a
glitch. The clock rising edge being at t4 solved this.

12

Quantifying Timing Performance

img src: “FPGAs with
VHDL: first steps”,
Helen DeBlumont

28/11/2024

https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ We knew about 2, but 1 and 3 are relatively new.

▪ To formalize our understanding of 1, we first need to define
“setup” and “hold” times for FF timing

▪ “Setup time”: The input to a flip-flop has to be stable for a
certain amount of time before a clock event occurs

▪ “Hold time”: The output of the flip-flop needs a certain
amount of time before it settles (becomes stable)

13

Quantifying Timing Performance

img src: nandland.com

▪ Note the similarity with the combinational circuit case here (the adder example)!!
The FF is just getting some special definitions for the same thing: Since the clock rising edge
is slow (doesn’t happen instantly), we need time before and after it to talk about 0s and 1s.

28/11/2024

https://nandland.com/lesson-12-setup-and-hold-time/
https://nandland.com/lesson-12-setup-and-hold-time/

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ OK, now we can formalize 3: considering setup and
hold, looking at the timing diagram, we can now see
how we can choose the max. clock speed

▪ We determine the shortest clock interval looking at
setup, hold and propagation times, specifically:

tclk (min) = tsu + th + tp

14

Quantifying Timing Performance

img src: “FPGAs with
VHDL: first steps”,
Helen DeBlumont

img src: nandland.com

▪ A faster clock risks
various issues
(next slide)

28/11/2024

https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://support.xilinx.com/s/contentdocument/0694U00000Q9R42QAF?language=en_US
https://nandland.com/lesson-12-setup-and-hold-time/
https://nandland.com/lesson-12-setup-and-hold-time/

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Specifically, if we further increase clock frequency, we risk getting two things:

- Logic breakdown: Real outputs simply don’t match with behavioral simulation. This could
happen if the second clock edge came before A2/c settled back to 0 in the previous slide.

▪ Remember: signal changes seem like they happen instantly in behavioral sim since there’s no
timing info (we know this is wrong, but behavioral sim runs fast, so we use it to check our code)

- Or even worse, metastability: if, e.g., the A2/c falling edge reaches the flip-flop input at a
time instant that is very close to the clock rising edge, we risk falling into a state in which
there’s physically no way that we can know which value the flip-flop holds.

▪ Remember the lab2 prep lecture and e-mails: with any async input to a system (like a button
press), we have the risk of metastability since we don’t know when that input will rise/fall
with regards to the clock edge. “Double-flopping” reduces the probability of this happening.

15

Quantifying Timing Performance

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Some more info on metastability:

- It’s caused by the finite transients of our
signals (digital is just an abstraction
here, we have analog signals
“underneath”)

- There’s always going to be a possibility
of having metastability events, but we
can lower that probability by
2/3/4/…-flopping

- Can happen on clock domain crossing as
well as async inputs like buttons,
switches etc.

16

Quantifying Timing Performance

img src:
https://en.wikipedia.org
/wiki/Metastability_(ele
ctronics)#

It’s not possible to simulate metastability in
Vivado since we’re already in the digital domain!
Metastability is an analog phenomenon

28/11/2024

https://en.wikipedia.org/wiki/Metastability_(electronics)#
https://en.wikipedia.org/wiki/Metastability_(electronics)#
https://en.wikipedia.org/wiki/Metastability_(electronics)#

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Back to quantification: Once we have the maximum clock frequency set, we know how much
throughput our design can produce → if it’s giving an output at every clock cycle, then
throughput = clock frequency and max. latency = 1 clock period.

▪ There’s a catch here though: Remember the tclk(min) equation → Adding large
combinational circuits in between two clocked flip-flops forces us to slow the clock down for
safe operation (lower throughput) since propagation and route delays are increased

▪ There are workarounds to this (i.e., parallelization, pipelining, …) which allow us to trade
latency off for throughput. We’ll cover these in the optimizations section.

▪ This situation is typical of timing analyses and optimizations → Setup and hold times are
typically fixed for a given flip-flop in a given FPGA, so we try to minimize the propagation
delays as well as the route delays to safely increase clock freq (hence, timing performance).

17

Quantifying Timing Performance

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

18

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

19

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ OK we’ve now formalized timing performance with setup, hold and propagation delays.

▪ There’s of course no way we can compute timing data manually for large designs, we’ll have
Vivado do this instead.

▪ This is called “static timing analysis”: Static because there is no stimulus.

▪ In simulation (consider the post-synth and post-impl simulations, not behavioral) we generate
certain stimuli to feed to the DUT, and we check the respective DUT output.

▪ While simulation is informative, if the stimulus doesn’t trigger a worst case scenario (e.g., a late /

early signal change on the critical path), then we’ll simply miss that and not be able to fix it.

▪ Static timing analysis computes worst case delays on all paths analytically and checks this
against timing constraints. Lesson → we need both sim and STA.

20

Static Timing Analysis

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ “constraints” ?? .xcd files! →→→→→→

▪ We only specified IO pins (physical constraints)
and the clock in the .xcd file up to now

▪ Vivado was having a field day up to now
not doing any considerable optimizations and
grabbing whatever resource it needs since we
didn’t constrain much.

▪ We will now try to tell it things like “we can’t
have that much delay between input A and
output B!” and it will try re-running synthesis
and implementation to account for those.

21

Static Timing Analysis

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Sometimes Vivado will be able to do some magic in synthesis and implementation to satisfy
those constraints without changing circuit behavior (e.g., re-route wires, use a different arrangement of

components), but sometimes it will just not be able to satisfy the timing constraints

▪ When this happens, we “fail timing”:

▪ This means, through some statistical calculations that Vivado did based on a set of process /
voltage / temperature (PVT) assumptions, some signals did not reach their destinations
(i.e., from input A to output B) in the time allocated by the constraints we enforced.

▪ The amount of time remaining for a signal is called “slack”, and if slack is negative, timing fails.
There are many types of slack Vivado computes (WNS, TNS, THS, WHS, WSPS, TSPS, …)

22

Static Timing Analysis

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Let’s consider a super-simple design and see how constraints work

23

Static Timing Analysis

▪ VHDL (DUT): ▪ .xdc (without timing constraints):

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ This synthesizes to a simple no-carry 2-bit adder as expected (LUTs realize adder truth tables):

24

Static Timing Analysis

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Say we add a 1 ns timing constraint on the path from input a[0] to output z[0] (unrealistic):

25

Static Timing Analysis

▪ We can do this via the “Constraints Wizard” →→→

▪ Since timing violations get detected over clock edges in
Vivado, the wizard creates a “virtual clock” at 1 GHz freq,
and then times the combinational path accordingly

▪ After adding this constraint and re-running
implementation, the timing report summary shows that
we failed this constraint with negative slack.

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ This constraint was just added to show us what a timing failure looks like though. In most
designs we will not be setting such individual timing constraints on pathways in the circuit.

▪ We will rather be concerned with “how fast we can clock” that circuit, input and output
delays, and the worst latencies from the inputs to the outputs.

▪ In most cases, a timing failure will mean we have too much combinational logic between two
given flip-flops, and we will need to find solutions to that problem.

▪ To make it easier to characterize such problems, keeping designs hierarchical, i.e., breaking
the circuit into numerous entities, and analyzing these entities individually helps a lot.

▪ This is what we did with the debouncer (separate entity)! We didn’t analyze anything there,
but that was a good example of hierarchical design.

26

Static Timing Analysis

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ So how do we add clock, input delay and output delay constraints? We know how to add the
clock constraint already! Recall these lines from earlier .xcd files:

▪ Line 1 says “the FPGA will be receiving a signal named clk on pin W5”, this is a physical
constraint like with those switches and LEDs earlier (tells the FPGA to expect the clock signal at that pin).
W5 is connected to the oscillator on the Basys3 board (outside the FPGA IC, but still on the board):

27

Static Timing Analysis

FPGA IC
flip MHz

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Line 2 is the timing constraint

▪ From AMD:

28

Static Timing Analysis

img src: https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

28/11/2024

https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 29

Static Timing Analysis

▪ On top of the clock, there are input delays and output delays that must be considered.
- Input delay: due to travel of input signals from input devices to the FPGA
- Output delay: due to travel of outputs from the FPGA to the “external device” that uses the outputs.

▪ We may have a hard time estimating good numbers for these, but be aware that Vivado still
needs them to be able to give a good estimate about the real scenario! (default =0)

▪ An example to clarify the need for IO delays (async reset):

- Imagine a power electronics control circuit running with a fast 100 MHz clock

- The circuit needs to be reset within 2 clock cycles (20 ns) if an emergency happens at the actuator

- The circuit gets notified of a reset with an async pulse coming from a separate detector circuit 2 m
away, connected by coax cable (incurring approx. 8.3 ns of propagation delay)

- Worst propagation delay inside the FPGA from the reset pin to registers that provide output is 13 ms

- If this coax input delay was not considered during sim (i.e., reset triggered at t=0, not t=8.3ns), simulations
will pass but the actual test will fail with a 13+8.1 = 21.1 ns delay for a reset since it’s over 20 ns.

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ With clock, input delay and output
delay constraints, Vivado is ready to
run STA and tell us whether timing
fails or not

▪ Since Vivado analyzes timing from FF
to FF, clock constraints are
straightforward

▪ For analyzing IO timing constraints
Vivado assigns fake FFs at the input
and output like it did in the analysis of
the purely combinational circuit (recall
the “virtual_clock”)

30

Static Timing Analysis

img src: https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

28/11/2024

https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 31

Static Timing Analysis

img src: https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

▪ Just like create_clock, input and output delays are set with a command on the .xcd file

▪ Commands to set input delays:

28/11/2024

https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 32

Static Timing Analysis

img src: https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

▪ Output delays are similar

28/11/2024

https://xilinx.github.io/xup_fpga_vivado_flow/presentations.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Recap:

- Set clock constraints

- Set IO delay constraints

(the constraints wizard helps us out, but we can use commands directly too)

- (re-)Run synthesis / implementation (they both run STA) to get updated results

- Check timing reports to see if the timing fails

- Check which paths failed on the report and proceed to optimization

33

Static Timing Analysis

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

34

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

35

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ STA is not enough on its own, it only locates the timing problems in the circuit. We need a
solution to those problems in the form of concrete optimizations.

▪ The topic of timing optimization is vast, with all sorts of heuristics and crazy tricks

36

Optimizations

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ In this part of the course (part 1), we will cover optimizations which make absolutely no
changes to the behavioral characteristics (input-to-output logic) of our circuit.

▪ In part 2 of the course, we will focus on methods that make such changes (e.g., navigating the
accuracy vs. timing trade-off, using less bits for the same calculation by sacrificing some accuracy etc.)

▪ The ones we will cover now are the most common ones (not exhaustive of course):

1. RTL-level optimizations: pipelining and parallelism

2. Vivado optimization tricks (some settings and strategies for synth. / impl.)
(this one is a bit advanced and it gives diminishing returns, we won’t dwell on it too much)

3. Using design primitives to replace inefficient parts of bare RTL

37

Optimizations

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Before we start with RTL-level optimizations, there’s one thing that we need to recall.
When we are writing RTL code…

- we are not wiring FPGA primitives to realize our circuit (i.e., we are not doing implementation)

- we are not drawing a netlist for our circuit (i.e., we are not doing synthesis)

- we are not even giving a complete description of our circuit elements!

▪ We are simply writing a behavioral description of our circuit. Vivado reads that description
and interprets it (via synth. + impl.) to do the above. So we only advise Vivado with our RTL.

▪ However, since Vivado is not a perfect optimizer, the more specific we get about how our
circuit should be, the closer we’ll get Vivado to generate that implementation.

▪ Today, Vivado is pretty good at “inferring” certain optimizations itself, but it might still need
our help. Make sure you’re telling it the right thing, because Vivado won’t double-check!

38

Optimizations - 1) RTL-Level

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ For each method we’ll make a brief definition and go through an example.

▪ Pipelining → there’s this well-known laundry analogy:

▪ Replace washing, drying, folding with some operations on the FPGA, replace their processing
times with propagation delays, and that’s exactly what we’ll be doing on the FPGA

39

Optimizations - 1) RTL-Level

img
src:https://www.cybercomputing.co.uk/Language
s/Hardware/laundryAnalogy.html

28/11/2024

https://www.cybercomputing.co.uk/Languages/Hardware/laundryAnalogy.html
https://www.cybercomputing.co.uk/Languages/Hardware/laundryAnalogy.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Note how we need exclusive operations for this, i.e., if the person who does the folding were
washing the clothes by hand, we wouldn’t be able to do this optimization.

▪ A hint from the laundry example: “…notice that although the washer finishes in half an hour,
the dryer takes an extra ten minutes, and so the wet clothes must wait ten minutes for the
dryer to free up.”

- this implies that we need additional memory to temporarily store the outputs of
pipelined operations before they are used in the next stage (FFs in between stages)

▪ Another hint from the laundry example: “…the length of the pipeline is dependent on the
length of the longest step. It is therefore most efficient to have small equally sized steps in
processing so that efficient pipelining can be incorporated…”

- “length of the pipeline” refers to latency here

40

Optimizations - 1) RTL-Level

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Pipelining example: cascaded multiplication

41

Optimizations - 1) RTL-Level

▪ Single stage (no pipelining):

▪ To trigger a pipelined implementation, we
explicitly define new temporary variables

Img src: https://vhdlguru.blogspot.com/2011/01/what-is-pipelining-explanation-with.html

Recall: this is VHDL, it’s not software, so don’t think of this loop
as running line-by-line. This is just saying: “synthesize 3 serially
connected multiplications, each triggered by a clock rising
edge”, we could unroll this for loop and write each line
separately too, it would have the same effect

Why would we pipeline this? Because those
3 mults in a single rising edge mean a lot of
logic between two FFs, which means
smaller max. clock speed without any
timing or logic violations (recall slide 15)

28/11/2024

https://vhdlguru.blogspot.com/2011/01/what-is-pipelining-explanation-with.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ These synthesize to the following (squares: FF, mux-like blocks: mults)

42

Optimizations - 1) RTL-Level

Img src: https://vhdlguru.blogspot.com/2011/01/what-is-pipelining-explanation-with.html

single-stage (not pipelined)

3-stage (pipelined)

28/11/2024

https://vhdlguru.blogspot.com/2011/01/what-is-pipelining-explanation-with.html

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ So what’s the result? What did we gain by doing this? The datapath looks pretty much the
same with 3 mults in cascade, just new FFs came in…

▪ The pipelined implementation has a lot less combinatorial logic in between flip-flops, so we
can clock the whole thing at much larger clock frequencies (without timing or logic violations)

▪ However, we increased the number of clock cycles that it takes for a given input to pass
through the system (because FFs get clocked sequentially, one after the other) by 3x,
this means an increase in latency in terms of the number of clock cycles.

▪ But don’t miss the catch here! We have pushed the max. clock frequency higher, so the
latency might have even dropped if the clock freq could be increased by more than 3x
(we would need to run STA on this design to find out if this holds).

43

Optimizations - 1) RTL-Level

▪ Extra: There’s some implication that Vivado might infer pipelining based on constraints so that the designer doesn’t have to explicitly re-design the RTL
for pipelining, but I personally feel like that’s not possible with the way Vivado currently handles optimization. This seems to be an open issue.

28/11/2024

https://www.reddit.com/r/FPGA/comments/z5wpxk/generating_pipeline_stages_automatically/

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Pipelining is one form of parallelization. Specifically, it’s a form where we don’t add extra
resources (e.g., an additional washer+dryer+folder) to the system, but we cleverly utilize the
idle times of existing resources to increase throughput.

44

Optimizations - 1) RTL-Level

▪ Other forms of parallelization are possible, for
instance if we had 4 washers, 4 dryers and 4 folders,
we would finish the whole thing in 1 cycle! →→

▪ This is called an “embarrassingly parallel” problem,
we can just throw more resources in to solve it (nothing
inherently embarrassing about it though, just poor terminology)

▪ In our domain, these are called SIMD (single instruction multiple data) problems. Canonical example
is image processing (you apply the same operations on every pixel). This family of problems is what
popularized GPUs when they first came out, and they’re naturally amenable to FPGAs.

28/11/2024

https://en.wikipedia.org/wiki/Embarrassingly_parallel#Etymology

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Parallelization example: well this is very straightforward, just create another process !

▪ VHDL is called a “parallel language” for this. Processes synthesize to circuits that run (exist?)
in parallel. However, we need problems that are behaviorally parallelizable for this to work.

▪ For instance, in the cascaded mult problem, we can do a*b in one process, c*data in another,
in parallel, but that’s about it. We will still need the 3rd mult to get (a*b)*(c*data).

▪ Even with this small trick we’ve gained 1 clock cycle (3 was needed earlier, now it’s 2 since the first mults

are in parallel), but we haven’t gained 3x, which was what embarrassing parallelization promised

▪ Algorithmic conversion of such parallelizable problems is a research topic on its own, e.g.,
what I just described is a reduction algorithm. The parallelization we discuss here is simply
the implementation of those conversions in hardware.

45

Optimizations - 1) RTL-Level

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Pipelining and parallelization are typically
used to improve timing. However, going down
this path, we might end up with using just too
many resources on the chip, and maxing out
FPGA capacity (area).

▪ If that is the case, resource sharing, some
Vivado synthesis / implementation strategies
and retiming might help us out.

▪ We will not go into details here since these
are a bit advanced, but you can try them out
by simply selecting them in the settings view
before you run synth / impl, and checking
utilization & timing reports after you do.

46

Optimizations - 2) Vivado Tricks

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

47

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Performance attributes in digital circuits

▪ Quantifying timing performance

▪ Static timing analysis, its differences with simulation, and why we care

▪ Optimizations: RTL-level → pipelining, parallelization and others

▪ Optimizations: Using primitives (e.g., DSP cores)

48

Outline

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ The 3rd optimization is arguably the most important one: using primitives instead of bare RTL

▪ The FPGA is not exactly a bunch of gates and interconnects between them. It’s much more
heterogeneous, i.e., it has different types of specialized components inside called primitives

▪ We’ve seen this a few times by now: our adder circuits were synthesized into something
called a CARRY block, and our custom combinational logic got synthesized into look-up tables
of different input sizes, carrying the truth table of that logic block.

49

Optimizations - 3) FPGA Primitives

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ However, those were the simplest primitives. There are many other complicated components,
much like microcontroller peripherals (ADCs, transceivers, DSP blocks, …)

50

Optimizations - 3) FPGA Primitives

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ We can think of these primitives as the old-school gate-level ICs that we discussed in the first
courses, the ones that people used to digital design with back in the 60s and onwards.

▪ The designer of the past has been replaced here by Vivado!

▪ We (high-level architect) give the designer a description (VHDL), and the designer figures out
which pieces to put together and how, in order to optimally realize our description.

▪ Vivado can “infer” the most basic primitives reliably, and it can sometimes do it for the more
complicated ones too, just by looking at our bare VHDL, without us explicitly calling that
primitive out in our code.

▪ However, just like we saw earlier, Vivado is not the best designer ever (yet). Therefore
sometimes we need to be more explicit in our descriptions as to how and where these
primitives should be used

51

Optimizations - 3) FPGA Primitives

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Primitives example: the DSP48E1 primitive that does wide-bitwidth arithmetic can be
inferred from simple RTL arithmetic in our VHDL code when the “attribute use_dsp: string;”
directive is included in the architecture declaration, but this doesn’t always work.

▪ Vivado gives us an alternative: use “language templates” to embed the primitive into your RTL
explicitly, and thus have full control over its behavior in your circuit. This is just like the
debouncer primitive! The only difference is we had RTL for that one, but this DSP core is
directly embedded in hardware (like an ASIC inside the FPGA)

52

Optimizations - 3) FPGA Primitives

direct instantiation,
gives full control but
it’s a bit hard
(parameter list goes
on for 80 more lines!)

Vivado also
provides
pre-configured
macros of these for
certain operations,
for instance this one
is configured as a
multiply accumulate
block

28/11/2024

https://support.xilinx.com/s/question/0D54U00006AqPXFSA3/can-not-correctly-infer-abc-to-dsp48e2?language=en_US

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Using such components for optimization is a huge part of digital design work nowadays

▪ To be frank, this is thanks to the success of the FPGA providers like Xilinx (AMD) / Altera (Intel)
who have set up their hardware such that their whole product line (even the earlier ones!!)
is internally compatible because almost all of their FPGAs use the same hardware blocks
(at least in terms of input-output configurations).

▪ So if someone built a very good VHDL library for, say, a UART module back in 2004, it’s most
probably still valid for FPGAs today, so you can just take the library and click synthesize.

▪ Examples of such ready-made components are FPGA primitives like these, pre-packaged IP
cores (there are companies who design and sell just these “IPs”, you can even encrypt them
for licensing before giving it out etc.), or other RTL modules like our debouncer

▪ You will almost invariably use at least a few such modules in your term projects too.

53

Optimizations - 3) FPGA Primitives

28/11/2024

© 2024 Burak Soner

© 2024 Burak Soner

next:

fixed-point arithmetic, pipelining optimizations

Part 2 of the course (applications, i.e., more exciting stuff than blinking LEDs)

5428/11/2024

