
© 2024 Burak Soner

© 2024 Burak Soner

ELEC 305

Digital System Design Lab

31/10/2024 1

Fall 2024

Lecture 3:
Simulation / Verification

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ At this point, we know how to describe a simple circuit
using VHDL based on a given set of specifications

▪ We know how to use Vivado to automatically
synthesize that circuit and implement it on the FPGA

▪ New → We can also use VHDL to generate test signals
for our circuits to simulate their behavior rather than
testing the system directly on the FPGA hardware

▪ Today we’ll have a look at the simulation (and more
generally the verification) aspect, which will guide us
when we start working on more complicated systems

31/10/2024 2

Recap

1. library IEEE;
2. use IEEE.STD_LOGIC_1164.ALL;
3.
4. entity coffeemaker is
5. Port (clk : in STD_LOGIC;
6. led : out STD_LOGIC;
7. sw : in STD_LOGIC
8.);
9. end coffeemaker;
10.
11. architecture Behavioral of coffeemaker is
12. signal pulse : std_logic := '0';
13. signal count : integer range 0 to 199999999 := 0;
14. begin
15. process(clk, sw)
16. begin
17. if sw = '0' then
18. pulse <= '0';
19. elsif clk'event and clk = '1' then
20. if count = 199999999 then
21. count <= 0;
22. pulse <= not pulse;
23. else
24. count <= count + 1;
25. end if;
26. end if;
27. end process;
28.
29. led <= pulse;

30. end Behavioral;

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and open-source options: GHDL + GTKWave

3

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and open-source options: GHDL + GTKWave

4

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Waterfall →→→→→
The specs dictate how the design should

turn out, and simulations (+ other techniques)
are used to verify that

▪ Verification on hardware (e.g., FPGA + logic

analyzer) is also done, but simulation can
cover significantly more cases

▪ Simulation is also sometimes the only
feasible option for complicated designs and
for debugging internal signals (can’t put scope

probes on signals inside the FPGA)

5

Simulation and Verification

▪ Most projects spend >50% of the total
engineering effort in verification. There are
even dedicated verification companies,
it’s an industry on its own!

img src: vhdl-online.de

31/10/2024

https://www.vhdl-online.de/courses/system_design/simulation/design_verfication
https://www.vhdl-online.de/start

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ The “Wilson Research
Group Functional
Verification Study”
(WRG-FVS) by Mentor
(now part of Siemens)
keeps tabs on sector
dynamics

▪ See how the number of
verification engineers
surpassed the number of
design engineers in
projects over the years!

6

Simulation and Verification

31/10/2024

https://uobdv.github.io/Design-Verification/WilsonResearchGroupFunctionalVerificationStudy/2020-WRGFV-Study/2020-WrG-FV-Study-Webinar-Oct13.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 7

Simulation and Verification

31/10/2024

https://uobdv.github.io/Design-Verification/WilsonResearchGroupFunctionalVerificationStudy/2020-WRGFV-Study/2020-WrG-FV-Study-Webinar-Oct13.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 8

Simulation and Verification

31/10/2024

https://uobdv.github.io/Design-Verification/WilsonResearchGroupFunctionalVerificationStudy/2020-WRGFV-Study/2020-WrG-FV-Study-Webinar-Oct13.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 9

Simulation and Verification

31/10/2024

https://uobdv.github.io/Design-Verification/WilsonResearchGroupFunctionalVerificationStudy/2020-WRGFV-Study/2020-WrG-FV-Study-Webinar-Oct13.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ There are many levels of verification: behavioral sim (no
timing) is the first / fastest / simplest and it is inaccurate for
timing. Then post-synth and post-impl are more accurate,
but they take more time

10

Simulation and Verification

▪ If we were to keep
going after the FPGA
deployment phase
and fabricate this
circuit (i.e., ASIC),
there would be even
further testing too.

See the “magic smoke test” for fun.

img src: vhdl-online.de

Img src:
https://web.eecs.umich.edu/~valeria/resea
rch/thesis/thesis2.pdf

31/10/2024

http://web.eecs.umich.edu/~valeria/research/thesis/thesis2.pdf
https://www.vhdl-online.de/courses/system_design/simulation/design_verfication
https://gesrepair.com/magic-smoke-test/
https://www.vhdl-online.de/start
https://web.eecs.umich.edu/~valeria/research/thesis/thesis2.pdf
https://web.eecs.umich.edu/~valeria/research/thesis/thesis2.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 11

Simulation and Verification

31/10/2024

https://uobdv.github.io/Design-Verification/WilsonResearchGroupFunctionalVerificationStudy/2020-WRGFV-Study/2020-WrG-FV-Study-Webinar-Oct13.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 12

Simulation and Verification

This is why I
emphasize specs,
requirements and
acceptance tests. If
you can write them
correctly, the
project is halfway
done!

31/10/2024

https://uobdv.github.io/Design-Verification/WilsonResearchGroupFunctionalVerificationStudy/2020-WRGFV-Study/2020-WrG-FV-Study-Webinar-Oct13.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 13

Simulation and Verification

Picture this digital design workflow chart in the following way:

▪ Design specifications stage → abstract representation of your
circuit, in words and numbers (e.g., “LED should blink at 1 Hz”)

▪ As you go down, you transform that representation,
- first into functional software (e.g., with C / Python)
- then into an HDL,
- then into a gate netlist (synthesis),
- and finally into an FPGA bitstream (implementation + write_bitstream).

▪ After each of those steps, you have the option of “running” the
circuit with certain stimuli and checking outputs.

▪ All of these runs would be simulations, we just don’t call the
final step that runs on the FPGA (or the ASIC) “simulation” per se,
because that is the intended outcome of the project.

31/10/2024

http://web.eecs.umich.edu/~valeria/research/thesis/thesis2.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 14

Simulation and Verification

▪ We run “testbenches” in simulations

▪ A testbench consists of…
- input stimuli for the device under test (DUT)
- a mapping between simulation signals and the DUT ports

▪ The simulator tool takes the testbench stimuli, the DUT
description (in VHDL / Verilog) and runs something called
“discrete event simulation” (DES) to calculate the outputs so
you can cross them with specs

▪ DES is a generic concept for simulating discontinuous
systems, we just employ it here, nothing new.

img src: vhdl-online.de

31/10/2024

https://www.ncbi.nlm.nih.gov/books/NBK293948/#:~:text=Discrete%20event%20simulation%20(DES)%20is,life%20process%2C%20facility%20or%20system.
https://www.vhdl-online.de/courses/system_design/simulation/testbenches
https://www.vhdl-online.de/start

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 15

Simulation and Verification

▪ Why is it called a “testbench”?

▪ We test final deployed digital hardware
(on FPGAs and ASICs) like this (right), with
programmed (either via buttons on the
tool or via a PC) waveform generators and
logic analyzers on a bench.

▪ The simulator mimics this on earlier
stages of the design workflow, so people
called it a “testbench”.

img src: https://www.ikalogic.com/assets/images/galleries/sp209/0%20Logic%20analyzer%20usecase.jpg

31/10/2024

https://www.ikalogic.com/assets/images/galleries/sp209/0%20Logic%20analyzer%20usecase.jpg
https://www.ikalogic.com/assets/images/galleries/sp209/0%20Logic%20analyzer%20usecase.jpg

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 16

Simulation and Verification

▪ For instance let’s consider our blinking LED task from Lab 1, a checkoff list looked like this:

▪ SW# are the stimuli

▪ LEDs are the outputs

pwr E/L pw3 pw2 pw1 E/L pw3 pw2 pw1
Seq SW0 SW1 SW4 SW3 SW2 LED1 LED4 LED3 LED2 LED0

1 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
2 ON OFF OFF OFF OFF OFF OFF OFF OFF OFF
3 ON OFF OFF OFF ON OFF OFF OFF ON OFF
4 ON OFF OFF ON OFF OFF OFF ON OFF OFF
5 ON OFF OFF ON ON OFF OFF ON ON blinking at 1 Hz
6 ON OFF ON OFF OFF OFF ON OFF OFF blinking at 1 Hz
7 ON OFF ON OFF ON OFF ON OFF ON blinking at 1 Hz
8 ON OFF ON ON OFF OFF ON ON OFF OFF
9 ON OFF ON ON ON OFF ON ON ON OFF

10 OFF OFF ON OFF ON OFF ON OFF ON OFF
11 OFF ON ON OFF ON ON ON OFF ON OFF
12 ON ON ON OFF ON ON ON OFF ON blinking at 2 Hz

▪ The simulation testbench for
this lab would basically mimic
what I did during the lab hours
→ “stimulate” the switches and
record how the LEDs behave

▪ Seq1-12 constitute all logical
combinations of the inputs

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 17

Simulation and Verification

▪ Why didn’t we simulate Lab 1?

▪ Simulators try to capture high-resolution timing information and extremely fast transients like
gate delays etc., so they work at high time resolutions like 1 ps.

▪ We’re trying to see if an LED blinks at 1 Hz or 2 Hz for ≈10 different switch configurations, that
means we need to monitor at least a full period, which means at least ≈10 seconds.
→That’s at least 10^13 simulation steps when the time resolution is 1ps!!

- Even if the simulation ran in reasonable time, the (uncompressed) simulation record file for this small
experiment would be >10 GB !!

▪ It’s possible to enlarge the step time, but convergence issues start after 1ns since the gate
models aren’t valid for larger steps, so you can’t really run the simulation in that scenario
(you might know “max step size” issues in MATLAB, this is similar, the solver breaks down. See ELEC518 for more on this).

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 18

Simulation and Verification

▪ Let’s change Lab 1 a bit and make it feasible for us to do the checkoff in simulation
→ 5 kHz blink rather than 1 Hz, simulation time of 15 ms (≈10 MB), 1 ms waits between seqs

▪ The clock is still very fast compared to
the rest of the circuit, but now at least
we can simulate the desired behavior →

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 19

Simulation and Verification

pwr E/L pw3 pw2 pw1 E/L pw3 pw2 pw1

Seq SW0 SW1 SW4 SW3 SW2 LD1 LD4 LD3 LD2 LED0

1 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

2 ON OFF OFF OFF OFF OFF OFF OFF OFF OFF

3 ON OFF OFF OFF ON OFF OFF OFF ON OFF

4 ON OFF OFF ON OFF OFF OFF ON OFF OFF

5 ON OFF OFF ON ON OFF OFF ON ON blinking at 5 kHz

6 ON OFF ON OFF OFF OFF ON OFF OFF blinking at 5 kHz

7 ON OFF ON OFF ON OFF ON OFF ON blinking at 5 kHz

8 ON OFF ON ON OFF OFF ON ON OFF OFF

9 ON OFF ON ON ON OFF ON ON ON OFF

10 OFF OFF ON OFF ON OFF ON OFF ON OFF

11 OFF ON ON OFF ON ON ON OFF ON OFF

12 ON ON ON OFF ON ON ON OFF ON blinking at 10 kHz

seq1 seq2 seq3 seq4 seq5 seq6 seq7 seq8 seq9 seq10 seq11 seq12 waiting for sim end on seq12

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 20

Simulation and Verification

▪ That was behavioral sim., post-synth and post-impl simulations add more accurate timing info

▪ Zoom in to the 7ms mark, see how the LED responses are delayed a bit in post-synth, and
there’s further delay on the LED0 line after implementation. Post-impl is the most accurate.

behavioral post-synth post-impl

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and open-source options: GHDL + GTKWave

21

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and open-source options: GHDL + GTKWave

22

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 23

Verification Approaches

▪ Lab 1 verification was easy enough just now… so why is verification hard?

▪ Mainly because verification effort grows fast vs. the increase in design complexity

▪ E.g., consider the case in which we need a 6-bit
password instead of a 3-bit password for Lab 1.
We had to test for 8 combinations with a 3-bit
password, with 6-bits we need to test for 64.

▪ Once you start factoring in different aspects,
things start getting out of hand if you’re
planning to continue on this exhaustive testing
approach, especially with multiple
clock/control paths and complex arithmetic

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 24

▪ In more formal terms, verifying a complex design (similar to

verifying a software program) is a problem that is “NP-hard”

▪ While it is certainly not unsolvable, sometimes exhaustive
testing is infeasible since total runtime can be as much as
years even on supercomputers

▪ Therefore, clever approaches are always sought for

▪ These range from simply designing a good simulation
testbench that represents the verification space well and
finds possible bugs, to more complicated algorithmic
solutions that can augment or even replace such brute
force simulation-testing

Verification Approaches

img src:
http://www.scielo.org.ar/scielo.php?sc
ript=sci_arttext&pid=S0327-07932007
000100013

31/10/2024

https://en.wikipedia.org/wiki/NP-hardness#
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932007000100013
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932007000100013
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932007000100013
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0327-07932007000100013

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 25

▪ So we’ve talked about two somewhat naive approaches:
- 1) exhaustive testing of “all possible scenarios” in the verification space
- 2) coming up with fewer clever tests that represent the whole space those scenarios cover

▪ There are at least two other prominent options:

- Intelligent verification: can be briefly summarized as an adaptive version of (2), where an
algorithm searches or optimizes for representative tests as the tests are running and the
outputs are analyzed. For instance, you do 1 test, see the results, design the next test so
that it tests a maximally different part of the verification space, and so on and so forth
until you cover as much of the space as possible with as few tests as possible.

- Formal verification: rather than simulating possible scenarios and interpreting them, you
try to model the system you designed mathematically so that you can try to rigorously
prove that the system works as intended via assertions.

Verification Approaches

31/10/2024

https://firsteda.com/news/an-introduction-to-assertion-based-verification-part-1/

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 26

▪ Intelligent verification is a growing field, but it’s relatively new
right now so it’s not prevalent in the industry

▪ Formal verification is motivated by the following idea:
“You will not be able to run a truly exhaustive test for most
practical designs, and an incomplete exhaustive test can be
misleading (see the example described on the right), so you need rigorous
proof to truly verify that your design works as intended”.

▪ This is a very promising field that has made it into standard
practices (Vivado supports one method called “Equivalency Checking”), but
it’s very specialized work since the methods typically have
constraints that need to be “tuned” for the design. See this
reddit thread for formal verification “lore” in the industry.

Verification Approaches

31/10/2024

https://support.xilinx.com/s/article/25007?language=en_US#A4
https://www.reddit.com/r/ECE/comments/j2zzuh/formal_vs_simulation_in_hardware_verification/
https://www.reddit.com/r/ECE/comments/j2zzuh/formal_vs_simulation_in_hardware_verification/
https://www.cl.cam.ac.uk/~jrh13/slides/types-04sep99/slides1.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 27

▪ Good formal verification methods
usually saves people A LOT of time
and money since “exhaustive
testbenching” is extremely infeasible
in some complex projects (e.g., think
of a Pentium CPU project)

▪ However coming up with such
methods for general use cases is also
very hard. Typically experts get
contracted specifically for a project
and devises / tunes methods
accordingly. See one such expert
here (GT LLC) →→→→→→→→→

Verification Approaches

31/10/2024

https://zipcpu.com/tutorial/formal.html
https://zipcpu.com/tutorial/class-vhdl.pdf

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and open-source options: GHDL + GTKWave

28

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and open-source options: GHDL + GTKWave

29

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 30

Using VHDL for Simulation (alongside description and synthesis)

▪ VHDL was originally devised for just describing circuits, people *read* VHDL descriptions to
verify circuit functionality *on paper*, so VHDL was like a documentation format.

▪ Naturally, two additional uses emerged for VHDL to augment this workflow:

- Automatic Synthesis: Given the VHDL description, generate a circuit design in terms of
known components (e.g., the CLBs on the FPGA, stuff that we see on the schematic after implementation)

▪ “Logic compilers” were developed: Took VHDL circuit descriptions + component
libraries as input, generating FPGA-deployable circuits as output

- Simulation: Given a VHDL description, verify the performance of the circuits that is
represented by that description

▪ “Logic simulators” were developed: Took VHDL circuit descriptions (DUT) + input
stimulus vectors as input, generating DUT responses as output

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 31

Using VHDL for Simulation (alongside description and synthesis)

▪ Component libraries for synthesis are developed “offline” by FPGA manufacturers, so
synthesis is covered. How do we generate the input stimuli for simulation?

▪ We can of course manually write vectors of signals for each test case in simulation via some
sort of “waveform writing GUI”, but it would be great if we programmatically generate these

▪ Well, we already know of a “tool” that allows us to programmatically describe something that
generates digital signals at its output → VHDL !!

▪ This is where it gets confusing → we use VHDL to describe a circuit that generates stimulus
signals for the simulation of a DUT that we also described in VHDL (different source files of course).

▪ Digital systems naturally have circularities like this but once you get past it you see why this
makes sense → by writing the stimulus in VHDL, you are practically generating something like
a smaller version of the waveform generator you use on the physical testbench →→

31/10/2024

https://www.ikalogic.com/assets/images/galleries/sp209/0%20Logic%20analyzer%20usecase.jpg

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 32

Using VHDL for Simulation (alongside description and synthesis)

▪ For instance the testbench I showed the results for earlier looks like this (Lab 1 but with 5-10 kHz)

1. library IEEE;
2. use IEEE.STD_LOGIC_1164 .ALL;
3.
4. entity coffeemaker_tb is
5. -- Port ();
6. end coffeemaker_tb ;
7.
8. architecture Behavioral of coffeemaker_tb is
9. component coffeemaker_pwd

10. Port (clk : in STD_LOGIC;
11. led : out STD_LOGIC_VECTOR (4 downto 0);
12. sw : in STD_LOGIC_VECTOR (4 downto 0)
13.);
14. end component;
15. signal clk : STD_LOGIC;
16. signal led : STD_LOGIC_VECTOR (4 downto 0);
17. signal sw : STD_LOGIC_VECTOR (4 downto 0);
18. begin
19.
20. dut: entity work.coffeemaker port map (clk => clk, led => led, sw =>

sw);
21.
22. clk_process :process
23. begin
24. clk <= '0';
25. wait for 5 ns;
26. clk <= '1';
27. wait for 5 ns;
28. end process;

29. sim_process : process
30. begin
31. sw <= "00000"; -- seq 1
32. wait for 1 ms; -- arbitrary wait.
33. sw <= "00001"; -- seq 2
34. wait for 1 ms;
35. sw <= "00101"; -- seq 3
36. wait for 1 ms;
37. sw <= "01001"; -- seq 4
38. wait for 1 ms;
39. sw <= "01101"; -- seq 5
40. wait for 1 ms;
41. sw <= "10001"; -- seq 6
42. wait for 1 ms;
43. sw <= "10101"; -- seq 7
44. wait for 1 ms;
45. sw <= "11001"; -- seq 8
46. wait for 1 ms;
47. sw <= "11101"; -- seq 9
48. wait for 1 ms;
49. sw <= "10100"; -- seq 10
50. wait for 1 ms;
51. sw <= "10110"; -- seq 11
52. wait for 1 ms;
53. sw <= "10111"; -- seq 12
54. wait;
55. end process;
56. end Behavioral ;

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

1. library IEEE;
2. use IEEE.STD_LOGIC_1164 .ALL;
3.
4. entity coffeemaker_tb is
5. -- Port ();
6. end coffeemaker_tb ;
7.
8. architecture Behavioral of coffeemaker_tb is
9. component coffeemaker_pwd

10. Port (clk : in STD_LOGIC;
11. led : out STD_LOGIC_VECTOR (4 downto 0);
12. sw : in STD_LOGIC_VECTOR (4 downto 0)
13.);
14. end component;
15. signal clk : STD_LOGIC;
16. signal led : STD_LOGIC_VECTOR (4 downto 0);
17. signal sw : STD_LOGIC_VECTOR (4 downto 0);
18. begin
19.
20. dut: entity work.coffeemaker port map (clk => clk, led => led, sw =>

sw);
21.
22. clk_process :process
23. begin
24. clk <= '0';
25. wait for 5 ns;
26. clk <= '1';
27. wait for 5 ns;
28. end process;

33

Using VHDL for Simulation (alongside description and synthesis)

This “circuit” that generates signals
for simulation will not get
synthesized and make it out to the
FPGA, so it doesn’t need ports

29. sim_process : process
30. begin
31. sw <= "00000"; -- seq 1
32. wait for 1 ms; -- arbitrary wait.
33. sw <= "00001"; -- seq 2
34. wait for 1 ms;
35. sw <= "00101"; -- seq 3
36. wait for 1 ms;
37. sw <= "01001"; -- seq 4
38. wait for 1 ms;
39. sw <= "01101"; -- seq 5
40. wait for 1 ms;
41. sw <= "10001"; -- seq 6
42. wait for 1 ms;
43. sw <= "10101"; -- seq 7
44. wait for 1 ms;
45. sw <= "11001"; -- seq 8
46. wait for 1 ms;
47. sw <= "11101"; -- seq 9
48. wait for 1 ms;
49. sw <= "10100"; -- seq 10
50. wait for 1 ms;
51. sw <= "10110"; -- seq 11
52. wait for 1 ms;
53. sw <= "10111"; -- seq 12
54. wait;
55. end process;
56. end Behavioral ;

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

1. library IEEE;
2. use IEEE.STD_LOGIC_1164 .ALL;
3.
4. entity coffeemaker_tb is
5. -- Port ();
6. end coffeemaker_tb ;
7.
8. architecture Behavioral of coffeemaker_tb is
9. component coffeemaker_pwd

10. Port (clk : in STD_LOGIC;
11. led : out STD_LOGIC_VECTOR (4 downto 0);
12. sw : in STD_LOGIC_VECTOR (4 downto 0)
13.);
14. end component;
15. signal clk : STD_LOGIC;
16. signal led : STD_LOGIC_VECTOR (4 downto 0);
17. signal sw : STD_LOGIC_VECTOR (4 downto 0);
18. begin
19.
20. dut: entity work.coffeemaker port map (clk => clk, led => led, sw =>

sw);
21.
22. clk_process :process
23. begin
24. clk <= '0';
25. wait for 5 ns;
26. clk <= '1';
27. wait for 5 ns;
28. end process;

34

Using VHDL for Simulation (alongside description and synthesis)

However, it will connect to the
DUT in some way, so it needs its
own internal signals (you can
picture this like the testbench
circuit “hugging” the DUT)

29. sim_process : process
30. begin
31. sw <= "00000"; -- seq 1
32. wait for 1 ms; -- arbitrary wait.
33. sw <= "00001"; -- seq 2
34. wait for 1 ms;
35. sw <= "00101"; -- seq 3
36. wait for 1 ms;
37. sw <= "01001"; -- seq 4
38. wait for 1 ms;
39. sw <= "01101"; -- seq 5
40. wait for 1 ms;
41. sw <= "10001"; -- seq 6
42. wait for 1 ms;
43. sw <= "10101"; -- seq 7
44. wait for 1 ms;
45. sw <= "11001"; -- seq 8
46. wait for 1 ms;
47. sw <= "11101"; -- seq 9
48. wait for 1 ms;
49. sw <= "10100"; -- seq 10
50. wait for 1 ms;
51. sw <= "10110"; -- seq 11
52. wait for 1 ms;
53. sw <= "10111"; -- seq 12
54. wait;
55. end process;
56. end Behavioral ;

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

1. library IEEE;
2. use IEEE.STD_LOGIC_1164 .ALL;
3.
4. entity coffeemaker_tb is
5. -- Port ();
6. end coffeemaker_tb ;
7.
8. architecture Behavioral of coffeemaker_tb is
9. component coffeemaker_pwd

10. Port (clk : in STD_LOGIC;
11. led : out STD_LOGIC_VECTOR (4 downto 0);
12. sw : in STD_LOGIC_VECTOR (4 downto 0)
13.);
14. end component;
15. signal clk : STD_LOGIC;
16. signal led : STD_LOGIC_VECTOR (4 downto 0);
17. signal sw : STD_LOGIC_VECTOR (4 downto 0);
18. begin
19.
20. dut: entity work.coffeemaker port map (clk => clk, led => led, sw =>

sw);
21.
22. clk_process :process
23. begin
24. clk <= '0';
25. wait for 5 ns;
26. clk <= '1';
27. wait for 5 ns;
28. end process;

35

Using VHDL for Simulation (alongside description and synthesis)

Define DUT and map testbench
signals to DUT ports (names can be
arbitrary, they don’t have to match)

29. sim_process : process
30. begin
31. sw <= "00000"; -- seq 1
32. wait for 1 ms; -- arbitrary wait.
33. sw <= "00001"; -- seq 2
34. wait for 1 ms;
35. sw <= "00101"; -- seq 3
36. wait for 1 ms;
37. sw <= "01001"; -- seq 4
38. wait for 1 ms;
39. sw <= "01101"; -- seq 5
40. wait for 1 ms;
41. sw <= "10001"; -- seq 6
42. wait for 1 ms;
43. sw <= "10101"; -- seq 7
44. wait for 1 ms;
45. sw <= "11001"; -- seq 8
46. wait for 1 ms;
47. sw <= "11101"; -- seq 9
48. wait for 1 ms;
49. sw <= "10100"; -- seq 10
50. wait for 1 ms;
51. sw <= "10110"; -- seq 11
52. wait for 1 ms;
53. sw <= "10111"; -- seq 12
54. wait;
55. end process;
56. end Behavioral ;

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

1. library IEEE;
2. use IEEE.STD_LOGIC_1164 .ALL;
3.
4. entity coffeemaker_tb is
5. -- Port ();
6. end coffeemaker_tb ;
7.
8. architecture Behavioral of coffeemaker_tb is
9. component coffeemaker_pwd

10. Port (clk : in STD_LOGIC;
11. led : out STD_LOGIC_VECTOR (4 downto 0);
12. sw : in STD_LOGIC_VECTOR (4 downto 0)
13.);
14. end component;
15. signal clk : STD_LOGIC;
16. signal led : STD_LOGIC_VECTOR (4 downto 0);
17. signal sw : STD_LOGIC_VECTOR (4 downto 0);
18. begin
19.
20. dut: entity work.coffeemaker port map (clk => clk, led => led, sw =>

sw);
21.
22. clk_process :process
23. begin
24. clk <= '0';
25. wait for 5 ns;
26. clk <= '1';
27. wait for 5 ns;
28. end process;

36

Using VHDL for Simulation (alongside description and synthesis)

Define the clock signal as a
sequential process (we can’t use
the clk on the XCD here, we’re
not on the FPGA!!)

29. sim_process : process
30. begin
31. sw <= "00000"; -- seq 1
32. wait for 1 ms; -- arbitrary wait.
33. sw <= "00001"; -- seq 2
34. wait for 1 ms;
35. sw <= "00101"; -- seq 3
36. wait for 1 ms;
37. sw <= "01001"; -- seq 4
38. wait for 1 ms;
39. sw <= "01101"; -- seq 5
40. wait for 1 ms;
41. sw <= "10001"; -- seq 6
42. wait for 1 ms;
43. sw <= "10101"; -- seq 7
44. wait for 1 ms;
45. sw <= "11001"; -- seq 8
46. wait for 1 ms;
47. sw <= "11101"; -- seq 9
48. wait for 1 ms;
49. sw <= "10100"; -- seq 10
50. wait for 1 ms;
51. sw <= "10110"; -- seq 11
52. wait for 1 ms;
53. sw <= "10111"; -- seq 12
54. wait;
55. end process;
56. end Behavioral ;

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

1. library IEEE;
2. use IEEE.STD_LOGIC_1164 .ALL;
3.
4. entity coffeemaker_tb is
5. -- Port ();
6. end coffeemaker_tb ;
7.
8. architecture Behavioral of coffeemaker_tb is
9. component coffeemaker_pwd

10. Port (clk : in STD_LOGIC;
11. led : out STD_LOGIC_VECTOR (4 downto 0);
12. sw : in STD_LOGIC_VECTOR (4 downto 0)
13.);
14. end component;
15. signal clk : STD_LOGIC;
16. signal led : STD_LOGIC_VECTOR (4 downto 0);
17. signal sw : STD_LOGIC_VECTOR (4 downto 0);
18. begin
19.
20. dut: entity work.coffeemaker port map (clk => clk, led => led, sw =>

sw);
21.
22. clk_process :process
23. begin
24. clk <= '0';
25. wait for 5 ns;
26. clk <= '1';
27. wait for 5 ns;
28. end process;

37

Using VHDL for Simulation (alongside description and synthesis)

Define the stimuli
(i.e., switch positions
for seq1,2,...,12)

29. sim_process : process
30. begin
31. sw <= "00000"; -- seq 1
32. wait for 1 ms; -- arbitrary wait.
33. sw <= "00001"; -- seq 2
34. wait for 1 ms;
35. sw <= "00101"; -- seq 3
36. wait for 1 ms;
37. sw <= "01001"; -- seq 4
38. wait for 1 ms;
39. sw <= "01101"; -- seq 5
40. wait for 1 ms;
41. sw <= "10001"; -- seq 6
42. wait for 1 ms;
43. sw <= "10101"; -- seq 7
44. wait for 1 ms;
45. sw <= "11001"; -- seq 8
46. wait for 1 ms;
47. sw <= "11101"; -- seq 9
48. wait for 1 ms;
49. sw <= "10100"; -- seq 10
50. wait for 1 ms;
51. sw <= "10110"; -- seq 11
52. wait for 1 ms;
53. sw <= "10111"; -- seq 12
54. wait;
55. end process;
56. end Behavioral ;

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 38

Using VHDL for Simulation (alongside description and synthesis)

▪ You can use practically any language to generate testbench stimuli like this, some industries in
which FPGA implementations come at later stages of the project workflow (i.e., starting with
software implementations) use C++ / C# / Python for compatibility with software tests.

▪ you just need to save the output waveform that you generate into a file that’s readable by
your simulator which will run the simulation on your VHDL-described circuit (the DUT).

▪ Also, VHDL is not the most prominent testbench language, people generally use
SystemVerilog (SV) for that purpose these days. However running a VHDL DUT through an SV
testbench is not straightforward in most simulators.

▪ Vivado does allow this by simply writing a Verilog wrapper around your VHDL DUT and
running the SV testbench on it, but for our simple simulations VHDL will be more than enough

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and open-source options: GHDL + GTKWave

39

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Intro to simulation and verification in digital circuits

▪ Verification approaches: why is it a hard problem?

▪ Using VHDL for simulation

▪ Vivado’s simulator and free open-source options: GHDL + GTKWave

40

Outline

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 41

Vivado vs. FOSS options

▪ Free and open-source software (FOSS) tools for simulation are lighter and cheaper (free!)
compared to Vivado, meaning you can run more tests in less time with less resources

▪ In terms of simulating logic behavior FOSS tools rarely make errors and when they do they
typically have workarounds (ref)

▪ However, when you want to go beyond behavioral simulation and synthesize + implement
designs on FPGAs, FOSS options start drying up.

▪ Currently the only FOSS-friendly path that I’m aware of is Lattice FPGAs (instead of Xilinx) with
the Yosys toolkits, but those are also not “battle-tested” like Vivado and Quartus (Intel/Altera)

▪ For lightweight behavioral simulation on your VHDL designs and testbenches, you can try out
GHDL, which mimics Vivado’s simulator + GTKWave to view waveforms.

▪ Let me know if you want to try these out and I’ll try to help you with the installations

31/10/2024

https://www.reddit.com/r/FPGA/comments/8nlexh/xilinx_simulator_and_ghdl_behave_differently/
https://github.com/YosysHQ/yosys

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 42

Vivado vs. FOSS options

▪ For post-synthesis and post-implementation simulation our Xilinx FPGAs, there are no FOSS
alternatives, Vivado is the only option.

▪ Once you add your VHDL testbench to your VHDL design project and successfully connect the
DUT to the testbench, the vivado simulator is pretty straightforward to use.

▪ You just hit the “Run Simulation” button and choose what type of simulation you want to use

▪ I’m skipping the details of how these simulators work, but the Xilinx User Guides and
application notes have a great level of detail about those aspects

▪ We will see how to use this tool in more detail in the next lab (FSM)

31/10/2024

© 2024 Burak Soner

© 2024 Burak Soner

next → HW 2 + Lab 2 (FSMs)

󰢡

4331/10/2024

