
© 2024 Burak Soner

© 2024 Burak Soner

ELEC 305

Digital System Design Lab

10/10/2024 1

Fall 2024

Lecture 2:
Revisiting Fundamentals



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner10/10/2024

▪ In this lecture we will design a digital system for an example task (a fire detector) 
and revisit our fundamentals along the way by dissecting each design choice

▪ Specifically, we’ll talk about…

- Digital vs. analog

- Using processors vs. application-specific circuits, and software design vs. hardware design

- Combinational and sequential logic

- Intro to HDLs and how to use them for realizing digital circuits on FPGAs

▪ We will treat all of these only lightly in this lecture though, detailed treatment will 
follow in later lectures and labs. Think of this lecture as an intro to the topics the 
course covers as well as review of some pre-requisite material. 

2

Outline



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ We basically want a system that predicts whether or not there is a fire in a room

▪ Let’s break down an example product: Nest by Google 

3

Task - Fire Detector

10/10/2024

https://store.google.com/gb/product/nest_protect_2nd_gen?hl=en-GB&pli=1


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 4

Task - Fire Detector

▪ Temperature and Smoke sensors → These are enough for us now, ignore the others 
(we’re not trying to build a product, this is just a case study)

10/10/2024

https://store.google.com/gb/product/nest_protect_2nd_gen_specs?hl=en-GB


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 5

▪ We can buy the temperature sensor in TR → SHT30 gives analog 
voltage output proportional to the temperature                                     
(it also gives out the humidity level on a separate channel, but ignore that)

▪ The smoke sensor is a bit hard to get, assume we built one based on 
ADIs advice here using LEDs and photodetectors which gives analog 
voltage output proportional to “smoke density”

▪ Voltage outputs from these sensors typically have a clear bijective 
(1-to-1 and onto) mapping to the physical quantities they measure

Task - Fire Detector

10/10/2024

https://www.direnc.net/gravity-analog-sht30-nem-ve-sicaklik-sensoru
https://www.analog.com/en/design-notes/a148450-smoke-alarm-system-2-0.html


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 6

▪ Naive attempt at a fire detection algorithm using these 2 sensors:

→TA: temperature, SA: smoke density

→X = TA*p1 + SA*p2 + b1 : affine combination of SA and TA

→Y = TA(t) - TA(t-100ms) : rise in temperature over 100ms

→if (X > THD1) and (Y > THD2) then “fire detected, start alarm”

→if (X < THD3) and (Y < THD4) then “fire extinguished / cooling, stop alarm”

→THD3-4 has hysteresis against THD1-2 (i.e., THD4<<THD2, THD3<<THD1)

▪ Through some calibration we can find OK values for p1, p2, b1 and THD1-4 

Design - Algorithm

10/10/2024

https://www.allaboutcircuits.com/tools/hysteresis-comparator-calculator/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ OK we have the sensors and 
an algorithm to make sense of 
the sensor readings

▪ everything works on paper

▪ let’s start designing its 
realization

7

Design - Algorithm

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ First design choice → analog vs. digital (we’ll choose digital of course, but still, let’s investigate)

- Analog: Continuous-time, “continuous-valued”. The physical world is mostly analog.

- Digital: Discrete-time, discrete-valued. Computers are mostly digital nowadays.

▪ Our algorithm inputs (sensors) are analog. We can digitize them straight away and 
use digital computation OR keep them as is and use analog computation

▪ let’s consider the analog case first (we will not start designing analog circuits now, but we 
will consider them as modules to make sense of the design in the analog domain)

8

Design - Analog vs. Digital

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 9

Analog computing

▪ Constant levels (parameters) can be realized with some resistive 
dividers + buffers. 

▪ There are 6 different operators, we need to design analog realizations 
for each:

- add → passive avg (with resistors) + 1 amplifier of gain=2 

- comparison → differential amplifier (2 transistors)

- mult → typically 4+ transistors (a.k.a. “modulator”)

- delay → other than RC delay, which is not really a delay!                                                
it’s tough to build, but possible (see bucket brigade or CTD) 

- AND, latch→ these are inherently digital but they have analog 
implementations for a given “logic” voltage level. An AND gate is 2 transistors 
in series, and a latch is a bistable configuration of those (typically called SR)

Design - Analog vs. Digital

→→→→→→→→

10/10/2024

https://www.n5dux.com/ham/files/pdf/Analog%20Delay%20Lines.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Analog computing

▪ OK we were able to build the system in analog fashion, what’s the problem?

▪ Alongside design challenges with certain components (e.g., a simple analog delay is much harder its digital 

counterpart), analog designs suffer significantly from external disturbances, noise and loss. 

▪ Specifically, since analog values are continuous, minor inaccuracies such as tolerances, parasitics, 
thermal effects etc., change the information they carry. 

▪ Furthermore, signal losses are always present and typically vary unpredictably. Together, these cause 
the signals to always be “dirty”, i.e., you never have a deterministic output like 0/1 as in digital.

▪ In our fire detector example we could tune the parameters assuming clean signals or a more realistic 
certain set of “dirty” signals and the system could then fail (either false positives or false negatives) in 
the case of unexpected amounts of noise and loss due to such disturbances.

10

Design - Analog vs. Digital

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Motivation for digital computing

▪ Noise and inaccuracy are unavoidable though,                             
so what can we do?

▪ The digital abstraction is a “workaround” to this 

▪ If our application allows us to settle for a few distinct voltage 
levels instead of the whole voltage range, we might recover 
the correct signal from its noisy mix and avoid error

▪ For example, if we can get by with only 3 distinct levels, e.g., 
{0, 0.5, 1} V, we can treat 0.3V as 0.5V and 0.1V as 0V, and so 
on. This way, if there’s a < 0.25V disturbance, we’re good!

11

Design - Analog vs. Digital

▪ Next step → let’s try to 
realize a digital design for 
our system

10/10/2024

https://web.mit.edu/6.111/volume2/www/f2019/handouts/L01.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Digital computing

▪ To realize our design with digital computation, we 
first need to “digitize” the analog inputs, i.e., sample 
them in time and discretize (“quantize”) the values

→ Note: We will not cover sampling in detail in this course 
(consider taking DSP: ELEC 303 for that if you haven’t), but we 
will cover quantization and its effects in detail.

▪ Temperature and smoke density have slow dynamics, 
so sampling them at a modest ADC clock of 1 kHz 
would be more than enough.

12

Design - Analog vs. Digital

▪ SHT30 transfer characteristics are shown on the right. Let’s assume our smoke sensor has a 
similar response curve, and that 30%-70% of the total range would correspond to safe and 
dangerous smoke density level limits respectively

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Digital computing

▪ Quantization → Let’s chop this 0.3V-2.7V voltage range up to 32 pieces and represent it with a 
uniform fixed-point number representation (5-bits) 

13

Design - Analog vs. Digital

▪ This means we’ll have the 
following values to work with 
(other values will be rounded to 
these somehow): {0.300, 0.375, 
0.450, … , 2.550, 2.625}

→Note how we don’t have 2.7 anymore, 
that would require a 33rd value

▪ We can now treat this set of 32 
values as a 5-bit digital value set 
(i.e., {b00000, b00001, b00010, …, b11110, b11111} ) and 
design around it

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Digital computing

▪ Let’s review our operators again like we did in the analog case:

- add → Recall the full adder                                     (don’t worry we’ll review these when the time comes)

- mult → same approach, different circuit for multiplication: 

- cmpr → 

- AND → trivial: 

- Latch → 

14

Design - Analog vs. Digital

- delay: 1 kHz clock + a 5-bit latch + a counter triggering at 100 

▪ Overall, the design complexity turned out to 
be significantly lower than the analog case 
because we were able to use the digital 
abstraction and do gate-level design!

this is the 1-bit version of course, we’ll need 
the 5-bit version but it’s the same thing 

10/10/2024

https://siliconvlsi.com/verilog-code-for-full-adder/#google_vignette
https://en.wikipedia.org/wiki/Binary_multiplier
https://www.electronics-tutorials.ws/combination/comb_8.html
https://lalacomputersci.wordpress.com/and-gate/
https://www.geeksforgeeks.org/latches-in-digital-logic/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 15

Comparison

Now let’s take a step back and compare what we have in digital vs. analog

▪ Digital (mostly) saves us from the detrimental effects of noise, we get deterministic outputs (to be fair the output of the task was 

binary like yes-fire / no-fire so it’s inherently more amenable to a digital design, anyhow →analog = noise problems)

▪ Digital looks simpler (thanks to the gate abstraction), but it actually has many more transistors, which means it 

spends more power, and probably takes up more area

- 5-bit full adder requires on the order of 100s of transistors. The analog adder needed only 1!!

▪ This also implies analog chips should be cheaper than their digital counterparts → Yes… but not really! Once you’re in 

production, the material costs are naturally lower yes, but the development effort drives the costs up in analog! 

▪ The easier development process drove costs down for digital, especially in CMOS, and led to the famous Moore’s law 

(exponential scaling in number of transistors per mm2), which basically meant this for hard analog tasks: “if you can do it fast / resolute 

enough in digital, don’t bother with the analog design, you’ll be better off in the long run”

Design - Analog vs. Digital

10/10/2024

https://ieeexplore.ieee.org/document/5407195


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Comparison

▪ “So… do we always choose digital?!” →No, proven behavioral design + financial means (and time!) 
to support the physical design effort + millions / billions of volume could mean analog is better.        
But if you’re prototyping or need re-configurability after deployment, digital is probably better. 

▪ This is typically a very complex analysis since the business implications are huge though, so don’t 
take my word for it.

▪ Today, power and signal path (radio & comms) chips are mostly analog, and recently the analog AI 
accelerator market is growing (e.g., see Mythic and Blumind) together with neuromorphic designs. 

▪ There are also designs based on different materials / processes such as carbon nanotube FETs, 
memristors, phase-change memory etc. and chipmakers are trying to find ways to increase 
efficiency with tricks like compute-in-memory (a.k.a. in-memory compute? the terms are relatively new). 

▪ > 50% of the market is still digital and mixed-signal (where the reconfigurable parts are mostly digital)

16

Design - Analog vs. Digital

10/10/2024

https://mythic.ai/
https://www.youtube.com/watch?v=lG5_EaIJXhc


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Blumind’s presentation at tinyML Asia 2023 had a few informative slides about this, click 
on the screenshots if you want to see the video:

17

Design - Analog vs. Digital

Many startups like Blumind have popped up in the last 10 years, trying to build the ultimate edge AI 
accelerator with the best TOPS/Watt. Movidius (acquired by intel) was probably one of the first, with their 
“Green Computing” vision processors (“Myriad”, not an analog design but it was revolutionary at the time). 

We haven’t seen a “winner” yet, the problem → requirement variation is just too high for different apps

10/10/2024

https://www.youtube.com/watch?v=lG5_EaIJXhc


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Bonus: Other types of digital systems

▪ We only discussed electrical approaches so far, and more specifically voltage-based signaling

▪ That’s a bit unfair, the first digital computer was mechanical! → The Babbage Engine

18

Design - Analog vs. Digital

▪ Since an adder is easier to build with gears than mul 
and div (sound familiar?), Babbage designed a machine 
that realizes the method of finite differences:

- basically polynomial approx allowing arbitrary ops with 
addition only, of course with a certain approx error  

- Input numbers with levers, turn the wheel, get your answer

▪ This is a clever design optimization, we’ll frequently 
do stuff like this to work our way around constraints

10/10/2024

https://www.computerhistory.org/babbage/
https://en.wikipedia.org/wiki/Finite_difference_method#:~:text=The%20finite%20difference%20method%20relies,uniform%20grid%20(see%20image).
https://www.computerhistory.org/babbage/engines/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 19

Bonus: Other types of digital systems

▪ Mechanical/electrical analogies are well-known by now though, so maybe this wasn’t a shock. 
Well how about a swarming-behaviour-of-soldier-crabs digital computer from 2012 !!

“Back in the early 80s, a couple of computer scientists … studied how it might be possible to 

build a computer out of billiard balls… This information is processed through gates in which 

the billiard balls either collide and emerge in a direction that is the result of the ballistics of 

the collision, or don’t collide and emerge with the same velocities. Now … a couple of pals 

have built what is essentially billiard ball computer using soldier crabs. “We demonstrate that 

swarms of soldier crabs can implement logical gates when placed in a geometrically 

constrained environment,” they say”

▪ A true digital computer, but not a practical (or animal/environmentally friendly) one for sure. Takeaway: 
there are other ways to realize digital systems, not just voltage-based, not even just electrical!

Design - Analog vs. Digital

10/10/2024

https://www.technologyreview.com/2012/04/12/186779/computer-scientists-build-computer-using-swarms-of-crabs/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 20

Bonus: Other types of digital systems (and more)

OK these were interesting for sure, but let’s get back to the practical approaches and recap:

▪ Voltage-based signaling is extremely amenable to CMOS (dominant manufacturing technology today) 
and most components consume approx. 0 power in resting state (e.g., think non-volatile SSDs), 
making it the dominant approach. We’ll exclusively focus on voltage-based in this course.

▪ However computing based on current amplitude, or the phase or frequency instead of amplitude, 
are also possible, and all have different applications (think BJTs vs. FETs)

▪ Other emerging technologies for the curious: 

- Optical computing based on fiber modes, nanophotonics, …
- Reservoir computing with organic-electrical hybrids → Brainoware (extremely interesting)
- Quantum computing
- …

Design - Analog vs. Digital

10/10/2024

https://www.nature.com/articles/s41928-023-01069-w


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Let’s have a go on an Arduino:

// define the quantize_to_5bits() function
void setup(){
// define sensor transfer characteristics
// define p1, p2, b1, THD1, THD2, THD3, THD4
int delay_counter = 0;
pinMode(1, OUTPUT);}

void loop() {
  uint8_t TA = quantize_to_5bits(analogRead(A0));
  uint8_t SA = analogRead(A1);
  delay(100); // unit is ms
  uint8_t TA_100msdelay = analogRead(A0);
  int X = TA*p1 + SA*p2 + b1;
  int Y = TA - TA_100msdelay;
  if((X > THD1) && (Y > THD2)){
    digitalWrite(1, HIGH)
  }
  else if((X < THD3) && (Y < THD4)){
    digitalWrite(1, LOW)
  }
  delay(1);  // for stability at approx. 1kHz sampling
}

(this is of course not exactly the same implementation, 
the timing’s off, we’re not using 5-bits etc., but it serves 
our purpose of analyzing processor implementations)

21

▪ OK we chose digital, let’s look back at our design 

→ we built dedicated circuits for our task

▪ This isn’t the only way though, we’re all more 

familiar with using processors for realizing 

algorithms like this in the digital realm. 

▪ Specifically for a task like ours (fire detector), we 

interface with physical signals, so we utilize 

embedded processors (microcontrollers, “MCUs”)

▪ On an MCU, this algorithm would not take longer 

than ≈ 50 lines of code!

Design - Circuits vs. Processors

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ That was much easier than designing a digital circuit with gates etc. (higher level of 
abstraction!) and it’s still digital.

▪ However, this implementation failed to realize a few things (alongside precise timing):

- Parallelization: the computation of X and Y use the same arithmetic resources on the processor, but on the 
circuit we can just synthesize two separate units and compute them simultaneously to gain speed if needed.

- Arbitrary arithmetic: the smallest data type in arduino is 8-bits, but with our circuit design we could go 
down to 5 bits and use “just enough” resources for the task if cost was an issue.

- Task specificity: it’s not just the arithmetic that’s wasteful, the processor has TONS of extra overhead (it has 
to “boot” to a stable state for starters). This is unavoidable as the processor is useless without this specific 
overhead. This means power, space, … all sorts of extra costs.

▪ Of course, the arduino is an especially weak processor, and some processors (especially custom 

MCUs or massively parallel ones like GPUs or ones with programmable fabric in them) do allow this sort of 
customization so this comparison doesn’t generalize well, but it does show our point.

22

Design - Circuits vs. Processors

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ So in general, when would we choose to build circuits instead of software on processors?

▪ Naturally, the reasons differ with respect to your design goals, but here are a few:

- First step towards an ASIC: Probably the most popular reason outside the defence sector. When you’re 
going to build a system in the milions (think of something like a 555, ≈1B/year 🤯), every transistor counts, so 
you scrap all unnecessary components and build an Application Specific Integrated Circuit (ASIC). 
Building and verifying your digital circuit for this task is a much stronger verification before the ASIC 
phase compared to doing that on an MCU because you will surely not put that MCU in your ASIC!

- High performance: Software is flexible but its performance is bounded by the hardware architecture of 
the processor. For instance, the AVX-512 extensions on modern processors have convoluted software 
implementations that get the best performance out of them for 512-bit vector ops (refs: 1, 2). However, if 
you want anything larger (e.g., image processing), you’re out of luck. Processor makers cannot support 
that sort of flexibility continuously unless it’s economically feasible (it’s almost always not!). FPGAs (on 
which we build arbitrary circuits, not processor-friendly software) typically fill this gap.

23

Design - Circuits vs. Processors

10/10/2024

https://en.wikipedia.org/wiki/555_timer_IC#cite_note-Dummies-5
https://www.intel.com/content/www/us/en/developer/articles/technical/optimizing-maxloc-operation-using-avx-512-vector-instructions.html#gs.4drtl9
https://stackoverflow.com/questions/75904198/simple-avx512-dot-product-loop-only-10-6x-faster-expected-16x


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ Reasons geared towards mission-critical apps like aviation and defence (more refs: reddit, vhdlwhiz, fpgainsights):

- Flexibility: Changing requirements over the course of a project might render your previous processor choice 

obsolete (legacy comm protocols, power requirements, wider parallelization, …), incurring a lot of technical 
debt. The custom circuit (FPGA) approach is flexible here since you can upsize/downsize your design as 
needed, without system/board-level changes.

- Security / anti-tampering: Reverse-engineering is significantly easier for software than an FPGA bitstream, and 

doing so in a semantically meaningful way on FPGAs (e.g., getting behavioral HDL code from the bitstream) is even harder. One 
reason: compiling software is significantly less complex than implementation + place-and-route on the FPGA. There are 
also a lot of encryption or obfuscation based protection methods too. In general, there is a lot of interesting ongoing 
work on this (1, 2, 3, 4). 

- Reliability and testing: More abstraction means easier design, but harder testing! Hardware can be verified 

more reliably than software for this reason (+ thanks to companies like Xilinx you have super-accurate device models, 

that’s part of why Vivado is huge). Furthermore, when you have flexible hardware, you can do things like 
thermal-aware design to avoid failures and further improve long-term reliability. 

24

Design - Circuits vs. Processors

10/10/2024

https://www.reddit.com/r/FPGA/comments/rf8dz5/use_of_an_fpga_in_aviation_and_mission_critical/
https://vhdlwhiz.com/fpga-or-microcontroller/
https://fpgainsights.com/fpga/fpga-in-aerospace-and-defense-advancements-and-applications/#:~:text=FPGAs%20are%20indispensable%20for%20high,of%20data%20at%20astonishing%20speeds.
https://github.com/f4pga/prjxray
https://github.com/epfl-vlsc/bitfiltrator
https://dl.acm.org/doi/abs/10.1145/3299874.3318030
https://link.springer.com/article/10.1007/s41635-022-00130-y
https://par.nsf.gov/servlets/purl/10169648
https://semiengineering.com/thermal-cycling-failure-in-electronics/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 25

▪ OK we’ve decided on a custom digital circuit for this task, let’s examine components. 
There are basically two types of logic components: combinational and sequential

- Combinational logic = output depends only on input
▪ e.g., button pushed, LED turns on and stays on as long as the button is down, turns off when button is up

- Sequential logic =  output depends on input + “state” (memory)
▪ e.g., button pushed, LED turns on, however this time it turns off when the button is pressed again

▪ Sequential logic has memory! Depending on how the memory is arranged, how it can be 
accessed and the data it holds, different types of “automata” can be built: Finite state 
machines, “Pushdown” machines (≈ FSM + stack), random-access machines (very similar to current 
Von Neumann computers with CPU + RAM), Turing machines.

▪ Check John E. Savage’s book for more on automata theory if you’re curious. My knowledge 
on this topic is limited so I don’t want to mislead anyone here with a light treatment.

Design - Logic Components

10/10/2024

https://cs.brown.edu/people/jsavage/book/pdfs/ModelsOfComputation.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 26

▪ Recall the basic set of logic gates →→→→→

▪ A gate is defined by an input-output function (truth table) 

+ temporal response (propagation delay)

▪ These are our “lego pieces”, we connect them in various 

ways to realize both combinational and sequential logic, 

hence, our digital circuits

▪ However, some of these are easier to manufacture and 

integrate than others (e.g., NAND flash) and there are also 

simplification algorithms (e.g., SOP and POS) so we 

typically do not rely on all of them at the same time

Design - Logic Components

10/10/2024

https://learnabout-electronics.org/Digital/dig21.php


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 27

▪ Let’s choose two example components from our fire detector example to study 
combinational and sequential logic over: the add component and the delay component 

▪ Addition is combinational, the operation has no state. It just takes two inputs and 
computes the output based on a set of logic rules 

▪ Specifically, our 5-bit adder needs to do the following: 

- Do 5 x 1-bit additions

- Manage the carry bit in each step

- Push out the 6-bit result (5 bit + 1 carry)

▪ Note that the circuit does this “non-stop”, there is no state change to wait for, it keeps 
outputting A+B as fast as possible, this is the essence of combinational circuits!

Design - Logic Components

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 28

Combinational Circuit (add)

▪ Recall the 1-bit full adder on the right

▪ To extend this to 5-bits, we connect a 0 to the 
first C

in
 bit, and connect the C

out
 of each 

consecutive adder to the C
in

 of the next. The 
final C

out
 is the additional mandatory 1 bit 

resulting from the addition operation

- Recall: addition of two N-bit numbers 
creates an additional bit, output gets 
represented by N+1 bits. Multiplication of 
two N-bit numbers becomes 2N bits.

Design - Logic Components

10/10/2024

https://siliconvlsi.com/verilog-code-for-full-adder/#google_vignette


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 29

Combinational Circuit (add)

▪ The logic is OK. But there is one more aspect, mostly 

covered in a “ceremonial” manner in introductory 

courses like ELEC 205: propagation delay

▪ Real circuits have finite bandwidth, you can’t shift 

voltages up and down between logic levels in 0 time 

(such a square wave requires ∞ bandwidth!)

▪ The rising and falling times make up the delay, and 

the worst case delay of this circuit as a whole 

(considering all input→output links) defines the latency

Design - Logic Components

Note: we all know the response is 

never this clean, especially with 

smaller transistors. However 

we’re abstracting out that part 

and settling for a single latency 

number to simplify things. 

Physical designers do a lot of 

black magic there when they 

actually build a chip with gates 

like this but that’s beyond our 

scope here.

10/10/2024

https://en.wikibooks.org/wiki/Digital_Circuits/Adders#/media/File:Full-Adder_Propagation_Delay.svg
https://www.homemade-circuits.com/calculating-transistor-as-a-switch/
https://www.amazon.com/High-Speed-Digital-Design-Handbook/dp/0133957241


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Combinational Circuit (add)

▪ Even though this is purely combinational, the higher-level 

app typically at least saves the values in time as a series, so 

the system is typically state-based (has memory)

▪ This typically means the circuit is clocked at a certain speed. 

As expected, this clock speed is dictated by the worst case 

delays in the circuit (we can’t try saving the output of the 

next cycle before this cycle’s output settles!)

30

Design - Logic Components

▪ In the case of this N-bit full 

adder, our gate delay is:

where n is per-gate delay         
(assuming all gates have the same delay)

Note: There’s one important “lookahead” point here, FPGAs implement gates with look-up tables 

inside “configurable logic blocks” (CLBs) to be able to make them programmable. However these CLBs 

naturally have different propagation characteristics since they are different than actual fixed gates, so the delay 

we compute on paper will not be equal to the delay on the FPGA. Furthermore it will change from FPGA to FPGA 

due to the way the CLBS are set up on the chip. Managing the delay on an ASIC requires a lot of black magic as 

discussed earlier so that’s a whole other topic. We’ll see more on managing delay and clocks in FPGAs later.

10/10/2024

https://en.wikibooks.org/wiki/Digital_Circuits/Adders#/media/File:Full-Adder_Propagation_Delay.svg
https://digilent.com/blog/fpga-configurable-logic-block/
https://digilent.com/blog/fpga-configurable-logic-block/
https://www.amazon.com/High-Speed-Digital-Design-Handbook/dp/0133957241
https://www.reddit.com/r/FPGA/comments/p8fi6b/how_to_find_fmax/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Combinational Circuit (add)

▪ Notice something here → Our full adder has a worst case 

delay of 12 unit gate delays in 5-bit, and it grows linearly 

with number of bits (in 32-bit it has 66, that’s huge!!)

▪ Our current design is called a “ripple carry adder”, and it’s a 

naive approach at an adder circuit with a large word width. 

▪ Faster versions are available, such as the “carry lookahead 

adder” which uses a partial version of the full adder as the 

building block and adds a “carry lookahead logic” 

component and attains O(1) in 6 (constant) unit delays. One 

downside → this needs gates with more than 2 inputs for n>2.

31

Design - Logic Components

10/10/2024

https://en.wikibooks.org/wiki/Digital_Circuits/Adders#


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

▪ OK we’ve characterized a combinational component, went over the preliminary design 

aspects, we’ll dive deeper in later lectures and labs

▪ Let’s do the same for the delay function to review sequential components

▪ The delay function can be implemented as follows: 

- a 1 kHz clock

- a 5-bit latch

- a counter triggering at 100, saves the delayed 5-bit value to the latch at each trigger

▪ Leaping ahead a bit → the counter already contains latches, so let’s just have a look the 

counter and the clock in detail. 

32

Design - Logic Components

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Clock

▪ The clock is not exactly a digital component, it’s rather something like a signal source. Generating a stable / accurate 

clock of a desired freq on a chip is a loaded topic and it’s not in the scope of this course, we will only see basics.

▪ The clock generation process starts from an oscillation source: a crystal, a tank circuit, and in some niche high-freq use 

cases (>10 GHz) → cavity resonators (DRO, Gunn etc.). Since oscillators typically cannot exactly produce the desired 

signal (harmonics and exact frequency), we add some signal conditioning (e.g., filters) and scalers (multiplier / dividers). 

▪ Also sometimes, when the speed of these “source oscillators” are not enough for the application (e.g., crystals are typically 

limited at ≈200 MHz, but you want to power a processor at 3 GHz), we may use something called a phase-locked loop (PLL). 

▪ PLLs are not only used to multiply clocks though, they have a pretty vast application space, and designing a good one 

for a given set of application requirements is very hard work → check these extra pll references and the last chapters of the famous 

“High Speed Digital Design: A Handbook of Black Magic” book for more info on clock generation 

33

Design - Logic Components

10/10/2024

https://en.wikipedia.org/wiki/Clock_generator
https://www.reddit.com/r/AskElectronics/comments/18j5sl0/fastest_clock_oscillator_using_discreet_units/
https://en.wikipedia.org/wiki/Phase-locked_loop
https://www.ti.com.cn/cn/lit/ml/snaa106c/snaa106c.pdf
https://www.amazon.com/High-Speed-Digital-Design-Handbook/dp/0133957241


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Sequential Circuit (counter)

▪ The simple free-running counter is the canonical example of a sequential circuit. Its current count 
value is its state, and it jumps between states at each clock tick. 

▪ In other words, its input is always the same: tick, tick, tick, … and its output is only             
dependent on its current state (remember Moore vs. Mealy finite state machines? This is a Moore’s FSM)

▪ Our counter FSM of limit=100 therefore needs 100 states. To represent 100 different states with 
binary logic, we’ll need 7 bits (6 makes 64 states available, not enough, and 8 →256 states, too much).

▪ These state bits are typically stored in circuits via flip-flops, the most popular one being a D flip-flop.

34

Design - Logic Components

10/10/2024

https://en.wikipedia.org/wiki/Flip-flop_(electronics)#D_flip-flop
https://www.cs.oswego.edu/~mdickso3/Edward%20Forrest%20Moore.pdf
https://www.typhoon-hil.com/documentation/typhoon-hil-software-manual/References/d_flip_flop.html
https://www.javatpoint.com/d-flip-flop-in-digital-electronics


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Sequential Circuit (counter)

▪ How does a digital component do this though? How does 
the flip-flop “latch” onto a certain value and retain that? 
We do not know of any gates that can do this.

▪ Answer → bistable multivibrator!

▪ The feedback connection on the SR part makes this 
possible. It’s a circuit that is stable at two points and 
unstable at all others. The trigger pushes the output 
between those two states.

▪ The transistor version is a bit more intuitive. You might 
remember this sort of feedback behavior from lab work on 
“Schmitt triggers” in introductory circuits courses.

35

Design - Logic Components

10/10/2024

https://en.wikipedia.org/wiki/Schmitt_trigger
https://www.javatpoint.com/d-flip-flop-in-digital-electronics
https://www.electronics-tutorials.ws/waveforms/bistable.html


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

Sequential Circuit (counter)

▪ There are two main types of counter circuits: synchronous and asynchronous, they have different 
use cases, in our case it doesn’t really matter because the clock frequency is very low 

36

Design - Logic Components

Asynchronous
Counter 
(4-bit)

Synchronous
Counter 
(4-bit)

the 7-bit versions are 
simple extensions

10/10/2024

https://www.geeksforgeeks.org/counters-in-digital-logic/
https://www.geeksforgeeks.org/counters-in-digital-logic/
https://www.geeksforgeeks.org/counters-in-digital-logic/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 37

Design - Logic Components

Sequential Circuit (counter)

▪ The propagation delay issue and related design aspects are valid also for sequential 
circuits just like combinational circuits

▪ However, the fact that a slow clock dictates the operation of the circuit makes 
things easier in the case of our fire detector → the delays are orders of magnitude 
smaller than one clock period, so the delays become negligible.

▪ The main challenges in sequential circuits arise from issues related to clock 
management (e.g., CDC) and other application-level issues (sampling etc.).

▪ Terminology note → we put together flip-flops to build registers. The register 
abstraction is important because it will be our most basic unit of memory!

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 38

▪ OK we analyzed digital vs. analog designs, investigated using processors vs. custom 
circuits and dove a bit deeper into how our digital circuit can be implemented.               
We are ready to deploy this realization.

▪ Old school → we can deploy this using discrete logic ICs (the 74 series)

▪ This might actually be an option for our small fire detector system example, but we can 
all imagine → for anything larger, this approach will not be scalable and that’s certainly 
not how people build larger systems like processors etc. nowadays…

Design - HDLs and FPGAs

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 39

▪ The need is clear → another level of abstraction on top of gates, a language, so that we 
can define and simulate the “behavior” of such circuits clearly.

▪ The language is to serve as both the input of an automated “gate netlist generator” for 
easy deployment, as well as a specification of the behavioral model of the circuit. 

Design - HDLs and FPGAs

10/10/2024

https://web.mit.edu/6.111/volume2/www/f2019/handouts/L01.pdf
https://web.mit.edu/6.111/volume2/www/f2019/handouts/L01.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 40

▪ We do have languages like this now, they are called hardware description languages (HDLs). Digital 
designers typically use these while designing circuits instead of netlist drawings like we did earlier. The 
most popular ones are VHDL and Verilog (and also SystemVerilog)

▪ HDLs are not even restricted to digital! There is an analog version of Verilog called Verilog-A which analog 
designers use to describe and simulate circuits (SPICE fashion)

▪ This way the design procedure gets separated into two automated parts which can be improved 
independently → synthesizing a gate-level netlist + realizing a physical layout for that netlist on a chosen 
piece of hardware (an FPGA, or an ASIC with a pre-determined underlying structure) 

Design - HDLs and FPGAs

10/10/2024

https://en.wikipedia.org/wiki/Standard_cell
https://web.mit.edu/6.111/volume2/www/f2019/handouts/L01.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 41

▪ The VHDL vs. Verilog (+SysVerilog) debate is endless, highly resembles any debate on 
any programming language or software tool, and in my opinion it’s a bit funny

Design - HDLs and FPGAs

▪ The debate is also pointless of 
course, as these two HDLs were 
not created differently for 
“artistic” reasons, they serve 
different purposes.

▪ Industry-dependent and 
geographical (cultural?) 
differences typically dictate the 
choice

10/10/2024

https://www.reddit.com/r/FPGA/comments/slg5e0/vhdl_vs_sysverilog_vs_verilog/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 42

▪ VHDL was invented by and for the 
defence industry (specifically, US DoD) 

and tied to MIL-STD-454 →→→

▪ The dominance of the US over the 
global defence arena might have 
been the reason for this → most 
non-US defence industries are also 
highly inclined towards VHDL as 
opposed to Verilog, the latter sees 
wider use in commercial sectors.

Design - HDLs and FPGAs

▪ We will study VHDL almost exclusively in this course, not because of its ties with the defence 
industry, but mostly because it’s a very explicit (formally called “strongly typed”) language that 
allows to picture the hardware more clearly (less abstractions).

10/10/2024

https://www.doulos.com/knowhow/vhdl/a-brief-history-of-vhdl/
https://apps.dtic.mil/sti/tr/pdf/ADA304607.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 43

▪ Example VHDL code from an online source 
for an up counter is shown on the right

▪ We’ll dive into this in more detail later on, 
but for now let’s point out an important 
difference with programming languages:

- This is not code that gets executed line 
by line like in C, Python, …        The 
whole source describes a circuit (the 
entity!), with input/output ports, 
signals (on wires) and “processes” 
inside the behavioral definition 
signifying the sequential components.

Design - HDLs and FPGAs

10/10/2024

https://www.fpga4student.com/2017/06/vhdl-code-for-counters-with-testbench.html


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 44

▪ Verilog is a commercial effort, 
invented at a company called 
Gateway Design Automation 
(acquired by Cadence)

▪ At that point VHDL was open, 
Verilog was proprietary. Realizing 
this would prevent widespread 
adoption, Verilog was converted to 
an open IEEE standard (#1364).

▪ System Verilog (superset of Verilog) 
followed this with #1800. 

Design - HDLs and FPGAs

10/10/2024

https://digilent.com/reference/learn/fundamentals/digital-logic/verilog-hdl-background-and-history/start
https://www.cadence.com/en_US/home.html
https://web.mit.edu/6.111/volume2/www/f2019/handouts/L02.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 45

▪ Once the HDL source is ready, we feed it to two automatic tools in series:                         

1) gate netlist generator, which is typically called “synthesis”, and                                          

2) place-and-route, which is typically called “implementation”

▪ The synthesis output is generic, it’s the gate-level design that we drew earlier and can be 

implemented anywhere (discrete digital ICs, FPGAs, ASIC). We’ll have a better idea about 

this after having a look at VHDL fundamentals so let’s focus on implementation for now.

▪ Alongside the synthesis output, the implementation tool takes in chip constraints, and 

plans a layout of the synthesized circuit on the die using its “resources”. 

▪ For ASICs this is typically a free-for-all situation (although there are some standards), 

and in FPGAs these “resources” are called configurable logic blocks (CLBs)

Design - HDLs and FPGAs

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 46

▪ We will study FPGA internals in detail during the lab 

tutorial, so let’s summarize the basics here. 

▪ The CLB unit is the core of the FPGA as it realizes the 

letter P (Field Programmable Gate Array). It can mimic 

most of the fundamental digital units we covered earlier 

(gates, or more complicated units like the D flip-flop). It 

typically has a complicated design with many resources 

inside to maintain versatility.

Design - HDLs and FPGAs

10/10/2024

https://www.eng.auburn.edu/~nelson/courses/elec4200/FPGA/ug474_7Series_CLB.pdf
https://www.eng.auburn.edu/~nelson/courses/elec4200/FPGA/ug474_7Series_CLB.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 47

▪ Between these programmable CLBs is another 

programmable component, the “interconnect”

▪ The implementation tool takes the gate-level 

design, assigns the resources inside the CLBs to 

certain roles as per the needs of the design, and 

then uses the switch matrices on the interconnect 

buses (typically 2D, see right) to connect those 

configured CLBs together and realize the circuit.

Design - HDLs and FPGAs

10/10/2024

https://cse.unl.edu/~jfalkinburg/cse_courses/2021/436/lecture/lecture32.html


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 48

Design - HDLs and FPGAs

▪ As you can imagine, finding the optimal 

combination of CLB assignments and 

interconnect configurations is not trivial, 

especially so for large circuits. 

Implementation tools typically work 

iteratively and require a significant amount 

of computation with high-fidelity physical 

models.

▪ This is part of why Vivado is such a huge 

software package. It’s literally building a 

circuit on the FPGA automatically like this.

10/10/2024

https://web.mit.edu/6.111/volume2/www/f2019/handouts/L01.pdf


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 49

▪ Once the implementation phase is completed, 

the designer then has the option to upload the 

generated bitstream to program the FPGA and 

finally realize the circuit in hardware. 

▪ However, there is a crucial step before this that 

any serious project must consider: simulation.

▪ The reason is simple: by simulating this design 

before deployment in the development tool, you 

can 1) give the circuit arbitrary inputs very easily 
(as opposed to doing this via a signal generator + logic analyzer on a 

desktop lab unit), and 2) debug internal signals 

alongside outputs in response to those inputs.

Design - HDLs and FPGAs

▪ A few types of simulation is typically available:

▪ Behavioral and post-synthesis simulations are 

better for uncovering your coding bugs since 

they are faster (no routing info), but are typically 

inaccurate for timing. Post-implementation 

simulations are closer to the real case.

10/10/2024

https://www.reddit.com/r/FPGA/comments/yvm9pe/is_there_a_way_to_simulate_fpga_projects_virtually/
https://support.xilinx.com/s/question/0D52E00006hpkgWSAQ/functional-vs-timing-simulation-in-vivado?language=en_US


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 50

Design - HDLs and FPGAs

▪ Synthesis, implementation and accurate simulation are fascinating technologies, and we can 

safely say these are among the primary “accelerators” of the modern semiconductor industry. 

▪ While they certainly sound like topics that only people lik 30-year Xilinx veterans would know 

something about (especially the place-route and post-implementation simulations), there are successful 

open source efforts (FOSS) in this domain! Some examples †:

- Icarus Verilog → https://steveicarus.github.io/iverilog/

- YosysHQ’s “nextpnr” → https://github.com/YosysHQ/nextpnr + https://arxiv.org/pdf/1903.10407.pdf 

- A python-based “modern” HDL → https://github.com/amaranth-lang/amaranth 

- EDA playground’s online simulator → https://edaplayground.com/ 

▪ The board support is not great in these though, so handle with care. † special thanks to İhsan Kehribar 

for introducing me to these 

10/10/2024

https://www.reddit.com/r/FPGA/comments/u0y17a/is_there_a_free_open_source_fpga_programming/
https://www.reddit.com/r/FPGA/comments/u0y17a/is_there_a_free_open_source_fpga_programming/
https://steveicarus.github.io/iverilog/
https://github.com/YosysHQ/nextpnr
https://arxiv.org/pdf/1903.10407.pdf
https://github.com/amaranth-lang/amaranth
https://edaplayground.com/
https://www.kehribartech.com/


© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner

© 2024 Burak Soner 51

Design - Recap

▪ OK we’ve covered almost every aspect (except hardware testing), let’s recap this intro:

- We laid out task requirements and chose sensors

- We compared and contrasted digital vs. analog realizations of the fire detector 

- We investigated a (very simple) processor implementation of this algorithm and discussed 
what advantages could be leveraged if this was instead implemented via a custom circuit

- We analyzed the modules in the circuit design and discussed their implementation details 
(using combinational and sequential logic components, gate-level design) 

- We investigated deployment options for the circuit. We discussed HDLs as a scalable 
alternative to gate-level representation, and how FPGA deployment is the natural choice. 
We briefly discussed FPGA structures as well as FPGA toolkits which allow for automatic 
netlist generation from HDLs as well as place-and-route and simulation.

10/10/2024



© 2024 Burak Soner

© 2024 Burak Soner

next → mandatory lab tutorial

we’ll have a look at Vivado + VHDL projects



10/10/2024 52


